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Abstract
We propose an inspiring approach for accurate impervious 
surface estimation based on the integration of remote sens-
ing and social data. The proposed approach exploits the 
strengths of two kind of heterogeneous features, i.e., physi-
cal features and social features, where the former ones are 
derived by a morphological attribute profiles-guided spectral 
mixture analysis model using remote sensing imagery, and 
the latter ones are obtained from the normalized kernel den-
sity of point of interest and vector road datasets. These two 
features are then integrated using a multivariable linear re-
gression model to estimate impervious surfaces. The proposed 
method has been tested in the main urban area of Guang-
zhou, China, in pixel level and parcel level, respectively. The 
obtained results, with the overall RMSE of 10.98% and 10.90% 
for pixel level and parcel level, respectively, demonstrate 
the good performance of integrating remote sensing imagery 
and social data for mapping of urban impervious surface.

Introduction
Impervious surfaces (IS), defined as the surfaces that water 
cannot infiltrate, are usually made up of anthropogenic mate-
rials, e.g., rooftops, parking lots, streets, and outdoor facilities 
(Slonecker et al., 2001). These increasing IS have been identi-
fied as a significant indicator of ecological condition and 
urbanization (Brabec et al., 2002; Hasse and Lathrop, 2003), 
as they have direct impacts on water quality of neighboring 
water bodies, hydrologic cycles, natural temperature cycles, 
and land surface temperatures (Schueler, 1994; Adams et al., 
1993; Geiger et al., 2009; Yuan and Bauer, 2007). The demand 
for current and accurate IS maps has greatly increased. To 
date, different approaches have been applied to characterize 
and quantify IS using ground-measured data and remote sens-
ing data (Weng, 2012). 

Remote sensing data have been used for the estimation of IS 
since the 1970s. Many techniques have been proposed to ex-
ploit the spatial, spectral, texture and context information of 
remote sensing data (Weng, 2012). For instance, Møller-Jensen 
(1990) applied a linear segmentation model which incorpo-
rates texture and context information of Landsat-TM imagery 
to cover urban areas. Deng et al. (2012) used a linear spectral 
un-mixing model to extract IS information from Landsat im-
agery. Research on imperviousness estimation from multi-
sensor and multi-source data has also attracted interest. Yang 
et al. (2003) quantified urban IS by using Landsat-7 ETM+ and 
high-resolution imagery. Liu et al. (2013) integrated night-time 
light luminosity, land surface temperature and multi-spectral 

reflectance data to enhance IS while suppressing other un-
wanted land covers. Huang et al. (2017) studied the subtle 
urban changes using multi-view satellite imagery. Although 
remote sensing data brings desirable properties (large cover-
age, information of spectral reflectance, etc.), impervious 
surface estimation is still a difficult task due to the complex-
ity of urban/suburban land cover, as well as the limitations of 
spectral and spatial resolution of remote sensing imagery (Lu 
and Weng, 2006). In this sense, medium-resolution satellite 
imagery can help to map urbanization areas at a large spatial 
scale, but it may lead to the underestimation of IS because of 
the heterogeneity of urban landscapes (e.g., soil, grass and 
water body). High-resolution remote sensing imagery (Ikonos, 
GF-2, aerial photography, etc.), provides an alternative. Nu-
merous pixel-based methods and object-based methods have 
been explored to map the IS with high-resolution imagery. 
Sawaya et al. (2003) utilized several pixel-based methods to 
map the imperviousness of Eagan City. Lu and Weng (2006) 
estimated urban impervious surface using decision tree classi-
fier and linear spectral mixture analysis model. Li et al. (2011) 
explored the object-based method to map urban impervious 
surface using very high resolution imagery. Zhang and Huang 
(2018) monitored the change of impervious surface using the 
multi-feature objected-based approach. In general, the accura-
cy of impervious fractions generated by traditional estimation 
methods, such as those presented in Bauer et al., 2004; Lu et 
al., 2011; Wu and Murray, 2003, is mostly dependent on the 
quality of multi/hyper-spectral imagery. These signature-based 
methods however have limitations in low-albedo impervious-
ness like old town areas, shadow, and urban greening areas.

The fast development of social technologies with global 
navigation satellite system results in a wide availability of 
social data, such as taxi GPS data, smart card data, social 
media data, and volunteered web maps. These heterogeneous 
datasets, with the attributes of geographic and human activ-
ity, provide unprecedented possibilities for the improvement 
of urban study (Hu et al., 2016; Liu et al., 2015; Lu and Liu, 
2012). Point of interest (POI) data, composed of geographic lo-
cation and their particular place-based information are widely 
available on the Web like Google Place1, Facebook Place2, 
Gaode Place3 (in China), which use their own taxonomy of 
categories or tags (Rodrigues et al., 2012). Different from the 
check-in data gathered from social media platforms, POI data 
are usually associated with their certain and detailed informa-
tion as names, addresses, coordinates (latitudes and longi-
tudes), categories, etc., which can reflect the land use type of 
a certain place. They therefore provide a new direction for 
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urban study, particularly for urban-
ization monitoring, with the aim to 
identify and classify the land use 
type (Rodrigues et al., 2012). Jiang 
et al. (2015) utilized volunteered 
POI data to estimate the land use at 
census block level. Hu et al. (2016) 
integrated Landsat imagery and 
open social data to map the urban 
land use of Beijing, China. Open-
StreetMap4 (OSM) is a collaborative 
mapping project where maps are 
collected and upload by volunteers. 
As the pioneer project of Volun-
teered Geographic Information, 
OSM has provided a large volume of 
fully open-source and editable geo-
graphical data including roads, wa-
terways, railways, and buildings. 
Currently, OSM data have become a 
popular data source and have been 
widely used in urban issue, such 
as the research in Arsanjani et al., 
2013 and Johnson and Iizuka, 2016. 
These studies, although limited, 
suggest a strong potential to inte-
grate the remote sensed features 
with social knowledge.

Remote sensing is an effective 
technology to map the ground with 
large coverage, but the latest and high-resolution remote sens-
ing imagery is not easy to access. On the other hand, social 
data, with the attributes of geographic and human activity 
characteristics, constitute an interesting source of informa-
tion. In this paper, a new technique for the estimation of IS, 
taking advantage of both remote sensing data and social data, 
is developed. Morphological attribute profiles (MAPs) (Dalla 
Mura et al., 2010) is an advanced tool for spatial features ex-
traction from remote sensing imagery, while spectral mixture 
analysis (SMA)-based methods are effective to evaluate the 
characterization of IS. In this work, we adopt MAPs of four 
structural attributes (area, length of bounding box, standard 
deviation, and moment of inertia) into a SMA model to gener-
ate physical features from multi-spectral remote sensing 
imagery. On the other hand, we apply a normalized kernel 
density estimation (KDE) model (Silverman, 1986) to estimate 
the social features of IS using POI datasets. To further enhance 
the urban structure information, road network datasets are 
considered in our experiments. Finally, we use a multivari-
able linear regression model (LRM) for feature integration in 
two different level, i.e. pixel level and parcel level. 

The reminder of this paper is structured as follows. The 
next Section 2 introduces the study area and the datasets 
adopted in our experimentsfollowed by our methodological 
approach in detail. The experimental results and discussions 
are then demonstrated. Finally, we conclude the paper with 
some remarks and hints at plausible future research 

Study Area and Datasets
Study Area
Guangzhou, located in the south of China (112°57′ E~114°3′ 
E and 22°26′ N~23°56′ N), is one of the most populated cities 
(with a population of 14.04 million). As the capital city and the 
major port of Guangdong province, Guangzhou experienced 
rapid development during the past 30 years. In this research, 

we selected the central parts of Guangzhou City as our study 
area, which cover several typical urban land use categories 
including impervious surfaces such as commercial land, resi-
dential land, road, and parking lot, as well as pervious surfaces 
such as park, forest, grassland, and bare soil (Figure 1). 

Data Collection and Preprocessing
Remote Sensing Data
We adopted Landsat-8 Operational Land Imager (OLI) imag-
ery (path 122/row 44) of Guangzhou acquired on 23 October, 
2017, as our remote sensing data source. This multi-spectral 
imagery, provided by U.S. Geological Survey5, has eight re-
flective bands of 30 m spatial resolution and one panchromat-
ic band of 15 m spatial resolution, with a low cloud coverage 
proportion of 5%. This imagery was corrected with ground 
control points and projected into UTM WGS84 coordinate 
system. After that, this dataset was converted to normalized 
exo-atmospheric reflectance measures with the radiance to 
reflectance conversion formula (Markham and Barker, 1987). 
Also, all water bodies were masked out. Moreover, high-
resolution images on Gaode Map were used to collect the 
reference data for training and accuracy validation, under the 
assumption that there were no apparent changes happened 
among Landsat imagery and online map due to the close 
acquisition time.

Social Data
We gathered more than one million POIs of Guangzhou from 
Gaode Map by using an application programming interface6. 
Each POI contains certain locational and functional informa-
tion, i.e. ID, category, and coordinate (latitude and longitude) 
of a place. Different from the volunteered geographic infor-
mation collected from social media platforms like Facebook, 
Twitter or Sina Weibo (Chinese Twitter), the POI data used in 
this work have already been collected, sorted, and verified by 
the surveying and mapping team of Gaode Map by 23 June, 
2016. It should be noticed that the acquisition time of remote 

5.  http://earthexplorer.usgs.gov/

6.  http://lbs.amap.com/api/ 4. http://lbs.amap.com/api/webservice/guide/api/search/

Figure. 1. (a) Guangdong province, located in the south of China, (b) Guangzhou City, the 
capital city of Guangdong province, is the main economic hub of the Pearl River Delta, 
and (c) Remote sensing imagery of our study area, acquired by Landsat-8 satellite.
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sensing data and social data should 
be as close as possible, because of 
the continuous construction of a 
city. The initial 864 types of POIs 
were gathered into 2 categories 
(see Table 1) including impervi-
ous point dataset (683,161 POIs) 
and pervious point dataset (1,337 
POIs), as shown in Figure 2a. POIs 
that did not belong to these two 
categories were removed. It should 
be noted that, with a total number 
of 684,496 impervious and pervi-
ous POIs, the distribution of POIs, 
although biased, i.e., there are less 
POIs in sub-urban areas than that in 
urban areas, is good enough for the 
exploration of the complementary 
of remote sensing and social data.

Also we collected the road 
network of study area from OSM 
(Figure 2b)). This vector dataset has 
been recognized and classified by 
street function/level (e.g., motor-
way, primary, secondary, trunk, ter-
tiary, residential, service, footway 
,and relief road). 

Methodology
Urban parcel, which can be bounded by road network, is 
defined as the basic spatial unit carrying the social functions 
in urban management and urban planning (Hu et al., 2016). 
Recently, parcel based urban study models are widely applied 
to better describe the urban function and capture the compre-
hensive and strategic urban planning (Liu and Long, 2016). 
Urban parcel has been proved to be an effective data source 
in urban function description (Yuan et al., 2012), which 
has been a tremendous benefit to support urban manage-
ment decision-making. So in this work, we conducted two 
IS estimation experiments, i.e., pixel-based IS estimation and 
parcel-based IS estimation to better present the contributions 
brought by POIs and road network while seeing the differences 
between the pixel-based and parcel-based method.

The framework of our proposed approach is illustrated in 
Figure 3. First, we adopt MAPs and build four structural attri-
butes (area, length of bounding box, standard deviation, and 
moment of inertia) that are then fed to a SMA model to esti-
mate the physical features of urban IS from Landsat-8 imagery. 
Then, in the processing of social data, we extract two kinds 
of social features based on pixel-level and parcel-level. These 
two set of features (pixel-based and parcel-based features) are 
then fused into a multivariable LRM, respectively, to provide 
an estimation of IS. In the following, we detail each step of the 
adopted method.

Physical Features Extraction
In this study, the physical features are derived by using a 
morphological attribute profiles-guided spectral mixture 
analysis model following the previous successful instructions 
(Zhu et al., 2018). It should be note that, physical information 
is reserved in some aspects by feeding the original bands of 
multispectral imagery into MAPs. Meanwhile, previous stud-
ies (Zhu et al., 2018) as well as our experiment results have 
shown its promising performance with a acceptable accuracy 
in physical feature extraction. Nevertheless, how to interpret 
its physical information is still a remaining challenge. Future 
efforts can be undertaken for further improvement.

According to Zhu et al. (2018), first we extract the spatial 
features from remote sensing imagery using MAPs with four 
different structural attributes, including area, length of bound-
ing box, standard deviation, and moment of inertia. MAPs are 
derived by generating the attribute profile (AP) on each band 
of multispectral imagery. For pixel xi, MAP can be defined as:

 MAP(I) = {AP(I1),AP(I2),…,AP(IP)} (1)

where AP(IP) is the attribute profile of feature p. These spatial 
features derived above are then fed to an SMA model to esti-
mate the multiple spectral signatures and their correspond-
ing abundance. As Wu and Murray (2003) suggested that the 
impervious surfaces are likely to be the combination of high-
albedo and low-albedo fraction images, we consider the high 
and low albedo endmembers to linearly represent the initial 
impervious fractions, which is given by:

 
Fb = ωlow, Flow,b + ωhigh, Fhigh,b + eb (2)

where Fb is the initial impervious fractions of band b, Flow,b 
and Fhigh,b are the low-albedo and high-albedo spectra of band 
b, ωlow and ωhigh are the weight of low-albedo and high-albedo, 
respectively, and eb is the un-modeled residual. Equation 2 
should follow the assumption that ωlow+ ωhigh = 1 while ωlow , 
ωhigh≥0. In this work, we consider the obtained initial impervi-
ous fractions as the physical features of remote sensing imag-
ery. This leads to the following definition of physical features:

Table 1. POI classification system.

Class I Class II Descriptions

Impervious 
POIs

Industrial Warehousing, manufacturing, recycling

Commercial
Automotive service, restaurant place, 
department store, shopping center, hotel

Institutional
Government service, transportation, 
sports complex, hospital, educational 
place, cultural venues and facilities

Residential Community, service apartment

Pervious 
POIs

Water body Lake, river

Green space Park, scenic spot, tourist area

Figure 2. (a) POIs of imperviousness and perviousness, and (b) Road network acquired 
from OSM.
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 f1 = {F1, F2,…, Fb}. (3)

It might also be note that param-
eters of Equations 1 and 2 are se-
lected following Zhu et al. (2018). 
The physical features of Landsat-8 
imagery are shown in Figure 4a.

Social Data Processing
POI Dataset
Kernel density estimation (KDE) 
model (Silverman, 1986) is an 
effective technique to converse 
independent points into con-
tinuous density map with a proper 
radius of influence (Meng et al., 
2017). This technique is widely 
used in identifying city functions 
(Yuan et al., 2012), flood assess-
ment (Schnebele, 2013), land over 
change detection (Meng et al., 
2017), etc. In this work, we use KDE 
model to estimate the distributions 
of impervious and pervious POIs, 
respectively, as follows:
 

M x
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x x
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n

( ) =
−





=
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1  

(4)

where  {x1,…, xn} 
are the set of n independent POIs, k is the 

quartic (biweight) kernel function given by:

 
K u u( ) = −( )3

1 2 2

π  
(5)

while u≤1. h is the search radius, which is generally set ac-
cording to the spatial resolution of remote sensing imagery 
and the distribution of the POIs. In this work, we implement 
the KDE model to generate the intensity of impervious POIs 
and pervious POIs with the search radius of 200m and 400m, 
respectively. Due to the huge gap of data quantity among 
these two POI datasets, we normalize two density maps by (Hu 
et al., 2016):

 
f M M M M2 3, min max min/= −( ) −( ) ,  (6)

where f2 and f3 are the normalized kernel density maps of 
impervious and pervious POIs, respectively. Two smooth maps 

indicate the density of two POI datasets, and pixels/regions 
with higher density values mean that there are more POIs, see 
Figure 6.

Processing of the Road Network Dataset
In this study, to simulate road covers, we buffer the road 
network with different road widths, e.g., 25 m, 20 m, 20 m, 
15 m, and 10 m for motorway, primary, secondary, tertiary 
and residential, respectively, referring to China Ministry of 
Housing and Urban-Rural Development7, see Figure 5a. Then, 
10,978 vector urban parcels are generated after removing road 
spaces (Figure 5b).

Feature Integration
A multivariable linear regression model is implemented to 
fuse the obtained physical and social features, as follows:

 IS f f fi i i n ni= + + +ω ω ω1 1 2 2 … ,  (7)

where fn presents the abundance map of feature n. ωn is the 
parameter controlling the weight of feature n. In this work, 
we select 100 training samples (90 m × 90 m) to learn the 
weight of each feature based on least square method. Then, 

7.  http://www.mohurd.gov.cn/

Figure 3. Graphical illustration of the proposed approach.

Figure 4. (a) Physical features of Landsat-8 imagery, and (b) is the zoomed-in view of 
old town area (Yuexiu district). This area holds the low impervious fractions for the 
existence of countless tree crowns and parks.
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Figure 5. (a) Road map derived by road network, (b) Urban parcels of study area.

Figure 6. Pixel-based normalized kernel density maps of (a) impervious POIs, and (b) pervious POIs. Parcel-based normalized 
kernel density maps of (c) impervious POIs and (d) pervious POIs.
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these learned weights are utilized to reconstruct impervious 
fraction map.

Accuracy Assessment
The general accuracy indicator used in this work is the R-
square, given by:

 
R

SSR
SST

2 =
 

(8)

in which SSR is the regression sum of squares and SST is the 
total sum of squares. The higher R-square suggests the less 
similarity difference among impervious fractions derived 
by the proposed approach and reference data. Furthermore, 
another three error measurements (1) root mean square error 
(RMSE), (2) mean absolute error (MAE), and (3) systematic er-
ror (SE) are used to evaluate the accuracy of our technique in 
detail, which are respectively given by:
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where Γ represents the final output of our proposed method, Γ̂ 
is the reference impervious fractions (in this study, we inter-
preted the reference data from Gaode Map Online). RMSE and 
MAE predict the estimation errors, and SE indicates the overall 
tendency of the estimation bias. 

Experimental Results
Two different experiments were conducted. The next Section 
presents the pixel-based IS estimation experiment, followed 
by the parcel-based IS estimation experiment. 150 patches 
(90 m × 90m) were randomly collected for accuracy assess-
ment. These samples are with a good coverage over the study 
area among all the land use types including roads, residential 
areas, business blocks, vegetation, and shadows. 

Pixel-based Impervious Surface Estimation
Figure 7a illustrates the IS result estimated from physical 
features and POI features. Meanwhile, we considered the road 
distribution map (see Figure 5a) as an additional source of so-
cial data, and then fed all physical and social features into IS 
estimation model (The result is shown in Figure 7b). The frac-
tions of (7a) and (7b) both vary from 0 to 1, and the learned 
weights of features are illustrated in Table 2. Figure 7c and 
7d give the zoomed-in views of (7a) and (7b), respectively. 
Three fitting curves are drawn in Figure 7e reference data 
versus physical features (R-square = 0.6932), (7f) reference 
data versus impervious fractions integrating physical features 
and POI features (R-square = 0.8345), and (7g) reference data 
versus impervious fractions integrating physical features and 
all social features (R-square =0.8452), suggesting a strong 
correlation between the impervious fractions we obtained 
and the reference data. Three R-square values go from 0.6932 
to 0.8345 and then up to 0.8345, which indicates the great 
contributions brought by POIs and road network. Because of 
the low coverage rate of road network and the randomness 

of samples, it is not easy to substantiate the contributions of 
road network by using the R-square value. However, by con-
sidering road distribution, we can capture each block clearly 
in the resulting map (Figure 7d).

Parcel-based Impervious Surface Estimation
In this paper, we consider the mean value of pixels in each 
parcel as the parcel-based physical features. Because of the 
complicated internal structure of each parcel, the accuracy 
of the parcel-based method is not as good as pixel-based 
method. Figure 8a shows the obtained impervious map in-
tegrating physical features and POI features, while Figure 8b 
takes the advantage of physical features, POI features and road 
distribution. The learned weights are shown in Table 2. Also, 
the enlarged views of these two maps with values varying 
from 0 to 1 are illustrated in Figure 8c and 8d. The following 
figures: (8e), (8f), and (8g) give the fitting curves of reference 
data versus physical features, reference data versus IS result 
using physical and POI features, and reference data versus 
impervious fractions integrating physical and all social fea-
tures. Three R-square values are 0.6932, 0.7512, and 0.7529, 
respectively. The experimental results suggest that parcel-
based methods contribute significantly to IS estimation. Fur-
thermore, parcel-based methods are also promising for higher 
level decision making in urban planning and urban analysis.

Accuracy Assessment
To further evaluate the accuracy of our work, referring to Bau-
er et al. (2004), two types of land covers including developed 
areas and less developed areas are conducted for verification 
purposes. Based on the definition of impervious surface in 
(Arnold, Jr. and Gibbons, 1996) and the exact conditions of 
study area, pixels with values equal or larger than 0.4 are 
sorted into developed area, and the rest are allocated to less 
developed area. Meanwhile, in order to explore the benefits 
of social knowledge, we use the physical features previously 
extracted for comparison. Three considered error measure-
ments (including RMSE, MAE, and SE) are listed in Table 3, 
revealing the persuasiveness and advancement of our method. 

Table 2. Feature weights learned by multivariable linear 
regression model.

Experiment I Experiment II

Pixel-based
(section 4.1)

Physical Features 0.91 0.76

Impervious POIs Features 0.59 0.49

Pervious POIs Features -0.11 -0.13

Road Features 0.18

Parcel-
based

(section 4.2)

Physical Features 0.87 0.84

Impervious POIs Features 0.79 0.76

Pervious POIs Features -0.09 -0.10

Road Features 0.04

Table 3. Accuracy comparison between the physical features 
we extracted in 3.1 and our proposed method using RMSE, 
MAE and SE of two experiments.

Methods Area RMSE(%) MAE(%) SE(%)

Physical 
Features

Less Developed Area 12.09 6.70 -5.32

Developed Area 18.08 14.23 13.68

Overall 14.66 9.56 1.90

Pixel-
based

Less Developed Area 10.65 6.65 -5.68

Developed Area 11.49 9.03 6.41

Overall 10.98 7.55 -1.09

Parcel-
based

Less Developed Area 10.32 5.95 -4.78

Developed Area 11.79 9.28 4.94

Overall 10.90 7.21 -1.09
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Generally, the accuracy of our work is persuasive. The overall 
RMSE is 10.98% and overall MAE is 7.55% in pixel-based ex-
periment, while in parcel-based experiment, the overall RMSE 
is 10.90% and overall MAE is 7.21%. Compared with physical 
features (initial impervious fractions), our proposed method 
could well avoid the influence of tree crowns/shadows with a 
promising accuracy. 

Discussion
In this study, we explored the potential of integrating remote 
sensing data and social knowledge in urban impervious 
surface estimation. Remote sensing is an efficient approach 
to map the biophysical characteristics of the Earth’s surface. 

However, its performance strongly depends on the obser-
vation conditions. This is a critical issue in urbanization 
monitoring, for instance: (1) rooftops covered by vegetation 
canopies may be characterized as pervious in remote sensing 
imagery, and (2) impervious fractions of small parks hiding 
in the residential areas are easily influenced by the reflected 
lights of buildings. These could largely result in improper 
impervious fractions. While combined with social knowledge, 
these effects could be well avoided. Figure 9 gives an example 
of Yuexiu District, which is the old city town of Guangzhou. 
This area is mostly covered by big tree crowns, which leads 
to the low-albedo (varying from 0.3 to 0.5) in impervious 
fractions generated from remote sensing imagery (Figure 9b). 

Figure 7. (a) impervious fractions estimated from physical features and POI features, and (b) estimated IS map integrating 
physical features, POI features and road distribution map; (c) and (d) are two zoomed-in view of (a) and (b), respectively. 
Fitting curves of (e) reference data versus physical features (R-square = 0.6932), (f) reference data versus IS result integrating 
physical and POI features (R-square = 0.8345), and (g) reference data versus impervious fractions integrating physical and all 
social features (R-square=0.8452), support the effectiveness of our method.
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However, by taking advantage of social data, the impervious 
fractions can be well revised (see Figures 9c, and 9d).

We also calculated the histograms of bright imperviousness 
and dark imperviousness to explore whether our proposed 
method could well distinguish these two different land 
covers. 512 random samples of bright imperviousness (256 
samples) and dark imperviousness (256 samples) are collected 
from Gaode Map Online manually. Figure 10 gives these his-
tograms, in which the bright areas (blue line) and dark areas 
(read line) are well separated.

Several limitations still exist in our method. These are 
related with: (1) shadows, (2) the specific distribution of POIs, 
(3) the low density of pervious POIs, and (4) urban greening. 
These uncertainties are difficult to be fully avoided, especially 

with high spatial resolution imagery, which are exactly the 
aspects that we are planning to address in further studies.

Conclusions and Future Research
High spatial resolution and accurate estimation of impervi-
ous fractions are widely required in urban management. The 
accuracy of existing imagery-based IS estimation methods 
are usually hindered by the heterogeneity of remotely sensed 
imagery. To make progress in this direction, we exploited 
the unique advantages of social data to cover the short-
ages brought by traditional remote sensing imagery. A new 
approach which utilizes the combined strengths of remote 
sensing data and social data is proposed. Physical features of 

Figure 8. Parcel-based IS mapping result with (a) physical and POI features, and (b) physical and all social features; (c) and 
(d) are two zoomed-in views of two obtained maps, respectively, in which the high and low impervious fraction parcels are 
properly segmented; (e), (f) and (g) give the fitting curve of reference data versus impervious fractions, which are derived 
from physical features, physical and POI features, physical and all social features, respectively. The R-square of each 
figure is 0.6932, 0.7512, and 0.7529. Due to the low coverage rate of road network and the limited number of samples, the 
contributions made by road network are not easy to indicate by R-square.
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IS derived from traditional remote sensing imagery contain 
physical characteristics of IS and basic map form, while social 
features generated from social data can provide abundant 
social information. Our protocol is shown to perform well in 
a case study focused on Guangzhou urban region in China, in 
which the overall RMSE reaches 10.98% and 10.90% for pixel 
level and parcel level, respectively. Though parcel-based IS 
map lost abundant details and has a relative lower accuracy 
comparing with pixel-based IS map, its social functions are 
well performed. Parcel-based IS map can be of great help to 
further investigation, such as detailed land use classification, 
built-up area extraction, and land use real-time monitoring. 
It is promising to apply this technique of both pixel-level and 
parcel-level into IS estimation in a relatively short time, espe-
cially in the suburban area and fast-growing countries.

There are several aspects in the proposed method that could 
be improved in future work. For instance, in this study, we 
used POI datasets collected from web maps, which are mostly 

located along the roads rather than uniformly distribute over 
the study area. This can lead to the inaccurate impervious frac-
tions, as the fractions of pixels along the roads may be higher 
than the pixels inside, even if they belong to a same building. 
Volunteered POI/check-in data offered by social media plat-
forms exhibit the potential to cover the shortage of POI data. 
Different from POI data, volunteered POI data are generated 
based on the location of users, but the social properties of these 
POIs are generally not defined. Additional efforts can be made 
by focusing on the identification and clustering of volunteered 
POI datasets to rationalize the impervious result. Another line 
of improvement is related to our utilization of a multivariable 
linear model for data fusion. Additional nonlinear models 
could be tested in future developments, like those based on 
neural networks, fuzzy set theories, Bayesian techniques, etc., 
(Zhang, 2010). These models exhibit potential to achieve even 
better performance in impervious surface mapping.

Figure 9. (a) Part of original imagery, (b) Physical features (initial impervious fractions derived by remote sensing imagery), 
(c) Pixel-based impervious surface estimation, (d) Parcel-based impervious surface estimation. The influences caused by 
urban greening are well avoided. 

Figure 10. Histograms of bright imperviousness and dark imperviousness of (a) pixel-based result, and (b) parcel-based result.
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