
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 16, NO. 10, OCTOBER 2019 1545

Intersensor Remote Sensing Image Registration
Using Multispectral Semantic Embeddings
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Abstract— This letter presents a novel intersensor registra-
tion framework specially designed to register Sentinel-3 (S3)
operational data using the Sentinel-2 (S2) instrument as a
reference. The substantially higher resolution of the Multispectral
Instrument (MSI), on-board S2, with respect to the Ocean
and Land Color Instrument (OLCI), carried by S3, makes the
former sensor a suitable spatial reference to finely adjust OLCI
products. Nonetheless, the important spectral–spatial differences
between both instruments may constrain traditional registration
mechanisms to effectively align data of such different nature.
In this context, the proposed registration scheme advocates the
use of a topic model-based embedding approach to conduct
the intersensor registration task within a common multispectral
semantic space, where the input imagery is represented according
to their corresponding spectral feature patterns instead of the
low-level attributes. Thus, the OLCI products can be effectively
registered to the MSI reference data by aligning those hidden
patterns that fundamentally express the same visual concepts
across the sensors. The experiments, conducted over four dif-
ferent S2 and S3 operational data collections, reveal that the
proposed approach provides performance advantages over six
different intersensor registration counterparts.

Index Terms— Image registration, multispectral imaging,
remote sensing, Sentinel-2, Sentinel-3, topic modeling.

I. INTRODUCTION

FROM early years, image registration has played a funda-
mental role in many remote sensing applications, where

analyzing multiple images of the same scene is important.
For instance, image fusion [1], change detection [2], scene
classification [3], and image superresolution [4] are among
the most popular applications where the lack of geometrical
misalignments is a key factor. In general, the image registration
process consists of overlaying two or more images of the
same scene which have been acquired at different times, from
different viewpoints or/and using different imaging sensors.
More specifically, this process can be defined as geometrically
transforming one or more input images, which are called
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slave images, to the coordinate system of a given reference
image, known as a master image. In order to achieve this
goal, four main steps are typically conducted by automatic
registration algorithms [5]: 1) characterization; 2) matching;
3) transformation; and 4) projection. In the first step 1),
the slave and master images are characterized by extracting
distinctive image structures or features. In 2), the considered
image characteristics are compared to one another in order
to find the spatial correspondences according to a specific
similarity criterion. In the third step 3), the transformation
model is defined and the corresponding alignment parame-
ters are estimated. Finally, the fourth step 4) deals with
the generation of the modified version of the slave image
by applying the previously estimated transformation and a
particular interpolation function.

In the literature, it is possible to find two main trends when
uncovering such transformations from airborne and space
optical data [6]: area-based and feature-based methods. On the
one hand, area-based registration techniques directly use pixel
intensity values to find the geometric correspondence between
the slave and master images by optimizing a specific similarity
metric. Cross correlation (CC) and mutual information (MI)
are the most popular metrics for registering monomodal and
multimodal optical data, respectively. On the other hand,
CC-like methods pursue to maximize the correlation over the
image overlap, MI-based approaches aim at maximizing the
degree of statistical dependence between the images, which
eventually makes this kind of techniques more suitable for
intersensor scenarios where intensity changes across sensors
are logically expected [5]. Despite the inherent simplicity
of the area-based registration approach, these methods are
still in use because of their simple hardware implementa-
tion in real remote sensing environments [7], [8]. Nonethe-
less, the high computational demand when handling complex
image distortions and data may constrain the straightforward
nature of these characterization schemes. On the other hand,
feature-based registration techniques make use of a set of rep-
resentative points extracted from both slave and master images
to reduce the amount of input data. These methods require
defining how the corresponding interest points are located,
characterized and paired according to a specific matching
strategy. For instance, Ma et al. [9] presented a remote sens-
ing image registration approach which employs a modified
version of the scale-invariant feature transform (SIFT) algo-
rithm, together with a robust key-point matching protocol
that combines position, scale, and orientation to increase
the number of significant correspondences. Another relevant
work can be found in [10], where Fan et al. define a novel
matching algorithm specifically designed for synthetic aper-
ture radar (SAR) imagery. In particular, this approach makes
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use of a patch-based descriptor that includes local intensity
values as well as geometric features to relieve the speckle
noise effect when coregistering SAR data. Yang et al. [11]
use a multiscale deep-learning architecture to uncover more
representative feature points to register multitemporal remote
sensing data.

Despite the potential of all these approaches, the inherent
complexity of the multispectral image domain, together with
the peculiarities of the real-world sensed data, still raise
some challenges when registering airborne and space optical
data from different operational instruments. Note that the
registration of large Earth surface areas becomes particularly
challenging when considering rather different spectral–spatial
image resolutions, and hence, certain data relaxations may be
useful in operational scenarios [6]. Yan et al. [12] introduce
two main data simplifications when registering Landsat-8 OLI
and Sentinel-2 MSI operational data in order to reduce the
process complexity while also obtaining a subpixel precision.
First, the authors only consider the near-infrared (NIR) bands
to estimate the intersensor displacements. Second, these dis-
placements are effectively modeled by affine transformations.

Another important reason to simplify the problem intricacy
in operational environments is the increasing demand for
on-board imaging applications. Some of the most widely
used processing techniques, including the image registration
task, are recommended to be conducted from an on-board
perspective in order to relieve the ground-segment workload.
Nonetheless, the physical limitations of the hardware carried
by remote sensing platforms may impose important opera-
tional constraints that motivate the use of simplified versions
of the data registration process. Specifically, a common prac-
tice consists in conducting band-to-band registration in order
to align each slave image band to the closest master one.
Zhang et al. [13] propose to register ZiYuan-3 and GeoEye-1
multispectral operational data considering the corresponding
panchromatic images as reference. However, this band-to-
band strategy requires a suitable spectral connection between
sensing instruments, which may not be always possible.
Alternative methods show the effectiveness of reducing the
input data dimensionality by means of shared intersensor
projection spaces. This is the case of the work presented by
Goncalves et al. [14] which makes use of the principal com-
ponent analysis (PCA) transformation to project and register
remote sensing data. Notwithstanding the remarkable perfor-
mance achieved by these methods in actual operational scenar-
ios, there is still room for improvement because of the high
complexity of unifying rather different spectral information
into a common characterization space when conducting inter-
sensor registration. This is particularly the case for the most
important currently operational Earth Observation missions
where Copernicus plays an important role.

The Copernicus programme is a joint action of the European
Commission, the European Space Agency and the Euro-
pean Environment Agency in order to supply continuous
Earth information for environmental and security applica-
tions. Within the program resources, Sentinel-2 (S2) [7] and
Sentinel-3 (S3) [8] missions are focused on the global moni-
toring of the Earth surface by means of multispectral imagery,
and hence, both operations share important synergies. The
S2 mission includes two identical satellites (S2A and S2B)

which incorporate the Multispectral Instrument (MSI) imaging
sensor. This instrument provides 13 bands spanning from 443-
to 2190-nm spectral range, with spatial resolution up to 10 m
per pixel (mpp). Analogously, the S3 mission comprises a
pair of dedicated satellites (S3A and S3B) that carry the
Ocean and Land Color Instrument (OLCI) sensor that provides
21 spectral bands ranging from 400 to 1020 nm, with spatial
pixel size of 300 mpp. Being the spatial resolution of the MSI
substantially higher than the OLCI’s creates an ideal scenario
to conduct an intersensor image registration process where the
higher spatial resolution of the former sensor can be used to
correct possible global misalignments in the latter.

In that scenario, this letter proposes a novel intersensor
image registration framework that makes use of a seman-
tic embedding space based on probabilistic topic models to
improve the functional registration scheme when considering
S2 MSI and S3 OLCI operational data. From an intersensor
perspective, registration mechanisms require a particular spec-
tral association to conduct the registration process. However,
this connection may be difficult to define in actual produc-
tion environments, or even it may become ineffective when
involving sensors of a rather different nature, such could be the
case of MSI and OLCI. Topic models have been successfully
used in remote sensing due to their potential to effectively
manage airborne and space optical data at a higher abstraction
level, being probabilistic latent semantic analysis (pLSA) one
of the most effective models [15]. Nonetheless, this kind of
probabilistic models has not yet been used to register inter-
sensor data despite their capability to relate visual semantic
information [16], which may be a key factor to overcome
intersensor dissimilarities. From a practical perspective, topic
models aim at uncovering hidden generative patterns (known
as topics) from an input data set, and also to express the
whole data collection as a probability distribution of topics
instead of the observable low-level features. The main issue
when registering intersensor imagery is the fact that the slave
and master multispectral domains are not the same since they
are both defined by different imaging sensors. To address this
issue, we develop a novel intersensor registration scheme that
projects the multisource input data into a topic-based semantic
embedding, where the registration process can be conducted
according to the uncovered spectral patterns. Our experiments,
which include operational S2 MSI and S3 OLCI data and six
different registration alternatives, show the advantages of the
proposed approach for intersensor image registration.

II. METHODOLOGY

A. Intersensor Image Registration Framework

The proposed S2 and S3 intersensor image registration
frameworks consist of the following three steps (Fig. 1).

1) Data Preparation: Two different encoding procedures
are adopted to unify S2 MSI and S3 OLCI spatial
resolutions. On the one hand, a straightforward pixel-
wise characterization approach is used for S3, where
spatial pixels represent topic model documents (d) and
unsigned integer 16-bit band reflectance values serve as
the model word-counts (n(w, d)). On the other hand,
a bag-of-words approach [1] is conducted to encapsu-
late S2 voxels, representing S3 pixels, as histograms
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Fig. 1. Proposed Sentinel-2 and Sentinel-3 intersensor image registration framework.

of visual words. Note that the scaling ratio between
both instruments is set beforehand due to the prior
knowledge of the relative sensor resolutions, which is
15× in this letter. Initially, S2 data are characterized
as vectorized 3 × 3 × 13 image patches with one pixel
overlapping. Then, the k-means clustering algorithm is
globally applied to these primitive features in order to
define the visual vocabulary containing 100 clusters.
This setting provides a fine granularity of S2 spectral
patterns [1]. Subsequently, the S2 image is tiled into
15 × 15 × 13 image patches. Finally, the S2 local
primitive features (3 × 3 × 13) within each S3 pixel
(15×15×13) are encoded as a single histogram of visual
words by accumulating the number of local features
into their closest cluster. From this process, we obtain
two different collections of M documents: one for S3,
D3 ∈ N

M×21, and another for S2, D2 ∈ N
M×100. Note

that M represents the number of spatial pixels in S3 and
also the number of 15 × 15 voxels in S2.

2) Semantic Embedding: Following the asymmetric
formulation of the standard pLSA model [17],
we estimate the � ∼ p(z|d) and � ∼ p(w|z)
parameters for both D3 and D2 collections by
maximizing the complete log-likelihood function
using the expectation–maximization (EM) algorithm.
In particular, the EM procedure works in two iterative
stages: the E-step (1), where the expected likelihood
value is calculated given the current parameter
estimates, and the M-step (2)–(3), where the new
optimal parameter values are computed according to
the current state. In this letter, we use a hidden latent
space with 3 units (Z = 3) and 1000 EM iterations as
default convergence settings

p(z|w, d) = p(z, w, d)

p(w, d)
= p(w|z)p(z|d)∑

z

p(w|z)p(z|d)
(1)

� ∼ p(z|d) =

∑

w

n(w, d)p(z|w, d)

∑

z

∑

w

n(w, d)p(z|w, d)
(2)

� ∼ p(w|z) =

∑

d

n(w, d)p(z|w, d)

∑

w

∑

d

n(w, d)p(z|w, d)
. (3)

Since D2 and D3 collections are independently processed
to estimate �2 ∈ R

M×Z and �3 ∈ R
M×Z , respectively,

we conduct an additional postprocessing optimization
step to align both semantic characterizations, that is,
sorting the slave topic-document representation accord-
ing to the master one. We find the optimal permutation
matrix � that minimizes the intersensor topic-document
�2 norm as (4) shows. Finally, (5) is used to apply such
permutation to �3. Note that the numeric subscripts are
used to identify S2 and S3 parameters

� = arg min
�∗

‖ �2 − �∗ �3 ‖2 (4)

�3 = (� �3). (5)

3) Registration: This step estimates the misalignment
between the master and slave images and also estimates
the final registered result. In particular, a straightfor-
ward band-to-band registration approach [12] has been
adopted, considering an affine transformation model
together with the MI metric and the One Plus One
Evolutionary Optimizer [18] in order to estimate the
corresponding displacements between the paired topic
characterizations. Then, the global transformation τ
between the master and slave images is computed as

τ =
∑

i

τ
(
�i

2,�
i
3

)

Z
(6)

where the τ operator estimates the affine displacement
according to the aforementioned MI-based registration
process, �i

2 and �i
3 represent the i th document-topic

characterizations for S2 and S3 and Z is the number
of considered topics (3). Finally, the average intersensor
misalignment (τ ) is applied to each band of the input
slave image to generate the final registered result. It is
important to note that we make use of the affine model
because this transformation has been shown to be effec-
tive for Sentinel Level-1C operational data [12].

III. EXPERIMENTS

A. Data Sets

Four coupled S2 MSI and S3 OLCI image sets have been
used for the experiments (Fig. 2). All the considered images
are operational data products downloaded from the Copernicus
Open Access Hub (https://goo.gl/uXmPxL). In addition, they
have been processed using the Sentinel Application Plat-
form (SNAP) software by resampling the S2 MSI product
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to 20-mpp spatial resolution and reprojecting the S3 OLCI
image to the corresponding S2 tile. The products have been
also atmospherically corrected, generating a final size of
5490 × 5490 × 13 pixels in S2 and 366 × 366 × 21 in S3.

1) Andujar (AN): The first image set contains two
S2 and S3 data products acquired over the Sierra
de Andújar (Spain). In particular, both images
were captured on March 10, 2017, and they cover
between (38.84◦, −4.15◦) and (37.85◦, −2.88◦) lati-
tude/longitude coordinates.

2) Bourdeaux (BR): The second set consists of a cou-
pled S2 and S3 images, collected over Bourdeaux
(France). Specifically, these products were gathered on
March 10, 2017, and they include between (45.14◦,
−1.72◦) and (44.13◦, −0.37◦) coordinates.

3) Madrid (MA): The third collection is made up of two
S2 and S3 images captured over Madrid (Spain) on
April 9 and 10, 2017, respectively. Both products com-
prise between the (40.64◦, −4.18◦) and (39.66◦, −2.88◦)
coordinates.

4) Utrecht (UT): The fourth image set includes two aerial
shots of Utrecht (The Netherlands) which were both
acquired on December 27, 2017. The sensing area covers
between (52.34◦, 4.46◦) and (51.32◦, 6.01◦) coordinates.

B. Experimental Protocol

Different registration experiments have been conducted to
assess the proposed approach performance. For each data
set, the S2 product has been used as the master image and
the S3 counterpart as the slave one. Moreover, a controlled
affine transformation has been applied to each S3 product
in order to slightly amplify the original MSI and OLCI
operational data misalignments. Since there is a 15× spa-
tial difference between the images, the simulated transfor-
mations have been defined not to affect the initial slave
image scale (details in https://goo.gl/cwAjVS). Regarding the
tested methods, five different embedding procedures have been
considered: 1) PCA1-PCA1, which projects both master and
slave images to their first PCA components where the affine
transformation is estimated; 2) PCA2-PCA2, which carries
out the registration over the two first PCA components and
computes the average intersensor misalignment; 3) PCA3-
PCA3, which follows the same process as 2) but with the
three first PCA components; 4) Band-PCA1, which uses the
master first PCA component to register each individual slave
band; and 5) Band-Band, which conducts a band-to-band
registration where each slave band is aligned to the closest
master one. All these registration mechanisms make use of
the same MI-based registration procedure than the proposed
approach. Additionally, the 6) phase correlation method [6]
has been selected as an alternative band-to-band registration
mechanism. To relieve the intersensor spatial differences,
S2 images have been subsampled by a 15× factor. Finally,
the root-mean-squared error (RMSE) and MI have been used
as quantitative metrics.

C. Results

Table I presents a quantitative assessment for the con-
sidered data and methods in terms of the RMSE and

Fig. 2. Qualitative registration results for AN, BR, and UT data sets.
(a) AN—NoReg. (b) AN—Proposed. (c) BR—NoReg. (d) BR—Proposed.
(e) UT—NoReg. (f) UT—Proposed.

MI metrics. Specifically, the four data sets are provided
in rows and the columns represent the registration alter-
natives, i.e., (0) No-Reg, (1) PCA1-PCA1, (2) PCA2-PCA2,
(3) PCA3-PCA3, (4) Band-PCA1, (5) Band-Band, (6) Phase-
Corr, and (7) Proposed. The last row also shows the average
metric results, where the best values are highlighted in bold.
In addition, Fig. 2 highlights the registration result of the
proposed approach.

One of the first remarkable points is the advantage of
using an intersensor registration scheme within the S2 and
S3 contexts. As it was previously mentioned, MSI has a
substantially higher spatial resolution than OLCI. Therefore,
S2 imagery can be considered a valid ground-truth reference
for spatially correcting S3 products. Logically, the higher the
sensor spatial resolution, the lower the nominal geolocation
errors. In this sense, the quantitative results show that S2 MSI
data can be used to effectively register S3 OLCI operational
products despite the spatial resolution differences. This fact
is also supported by the reported qualitative results (Fig. 2),
where the proposed intersensor registration approach is able
to correct the existing spatial deviations.

Regarding the overall performance, Table I shows that all
the considered intersensor registration alternatives are able
to outperform the baseline scenario: (0) No-Reg, where no
registration is applied. Considering the RMSE index, the two
worst approaches were (3) and (6), followed by (4), (1), (5),
and (2). In the case of the MI metric, a similar trend can
be observed where (3) and (6) are still the worse methods,
followed by (1), (5), (2), and (4). Despite the remarkable
performance achieved by some methods, i.e., (2) and (5),
the proposed approach is able to provide even a superior
result for both metrics. The presented method quantitatively
outperforms (2) by 27.95 RMSE and 0.0003 MI units, and it
also improves (5) average result in 33.67 RMSE and 0.0004
MI units.

In general, registering intersensor operational data raises
the challenge of dealing with different instruments, which
is particularly relevant in the Copernicus context due to the
significant spatial differences between S2 MSI and S3 OLCI.
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TABLE I

QUANTITATIVE REGISTRATION RESULTS FOR THE CONDUCTED EXPERIMENTS

Despite its simplicity, the band-to-band registration approach
shows a robust performance. However, registering the first two
PCA components provides a better overall result, excluding the
proposed approach, because the input multispectral domains
are encapsulated into the greatest variance directions. In this
way, the registration process can be conducted over correlated
principal components, which allows unifying the intersensor
content. With all these considerations in mind, there is a key
factor that makes the proposed approach more suitable to
tackle this task: the intersensor noise. Note that MSI and OLCI
are affected by different kinds of noise since they both have
rather different imaging models and corrections. Therefore,
it is possible that different intersensor noises were captured
when including more principal components, which logically
has a negative impact on the registration process. Precisely,
this is the reason why (3) is the worst method, whereas (2)
is among the best ones. The proposed approach manages
to relieve these undesirable effects by using a multispectral
semantic embedding that unifies intersensor data at a higher
abstraction level. More specifically, the presented method
makes use of the pLSA model to project the S2 MSI and
S3 OLCI data into their corresponding generative feature
patterns. Hence, the intersensor registration process can be
conducted in a common space where visual concepts can
be represented via different multispectral signatures while
minimizing the effect of raw spectral data noise. Despite the
advantages of the proposed intersensor semantic embedding,
its performance with other instruments may depend on the
considered transformation models and metrics [12]. Further
analyses should be made on the EM-based optimization cost
for its actual operational deployment.

IV. CONCLUSION

This letter presents an intersensor registration approach to
effectively coregister S2 MSI and S3 OLCI operational data.
Traditional registration mechanisms struggle at generating a
common characterization space when considering MSIs of
a different nature. However, the proposed method projects
the master and slave input data into a semantic embedding
via topic modeling, where the registration process can be
conducted at a higher characterization level. The input images
are represented according to their spectral feature patterns
that represent the same visual concepts across the sensors.
Then, a straightforward operational registration procedure is
effectively used to estimate the global intersensor displacement
over this semantic space. Our experiments, which include
four operational data collections and six different registration
alternatives, reveal that the presented intersensor registration
framework is able to provide advantages in the context of
the Copernicus program. This letter proves the potential of
probabilistic topic models to effectively uncover intersensor

patterns, useful to coregister S2 MSI and S3 OLCI operational
data. Future work will be focused on developing efficient par-
allel implementations of the proposed approach and studying
deep intersensor embedding architectures.
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