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A Joint Sparsity Approach to Soil Detection Using
Expanded Bands of WV-2 Images
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Abstract— Soil can be used as a damage indicator of land-
slides and flooding, which expose soil from vegetation canopy.
It can also be used as an indirect indicator of illegal tunnel
digging activity. This letter presents a sparsity-based approach
to soil detection using multispectral satellite images, where both
original and synthetic bands have been used. Spatial and spectral
information has then been jointly used in soil detection. Extensive
experiments clearly demonstrated the feasibility of our approach.

Index Terms— Extended multiattribute profile (EMAP), flood-
ing, joint sparsity-based model, landslide, multispectral (MS)
satellite images, soil detection, synthetic spectral bands.

I. INTRODUCTION

ACCORDING to the United States Geological Survey
(USGS) [1], landslides are a serious geological hazard

in almost every state in the United States. It was estimated
that they cause in excess of U.S. $1 billion in damages
and 25–50 deaths each year in the U.S. Globally, landslides
cause billions in damages and thousands of deaths each year.
Similarly, flooding also causes billions of dollars in damages
in the U.S. [2]. In both cases, the soil may be exposed, which
can be used as one of the indicators for damage assessment
of landslides and flooding. In [3], we used multispectral (MS)
images in the visible and near infrared (VNIR) range of
Worldview-2 (WV-2) to detect soils that are related to
excavated soils from illegal tunnel digging. There are two
motivations for using satellite images for soil detection. First,
satellites cover a large area, as compared to aircrafts. Second,
as compared to Landsat (30-m resolution) and Moderate
Resolution Imaging Spectroradiometer (500-m resolution),
the WV-2 images have high enough spatial resolution to detect
small bare-soil areas. In [3], we proposed a joint sparsity-
based approach to soil detection where spatial, spectral, and
feature domain information has been used. We observed that
using 8-band MS images can yield much better detection
performance than that of using only RGB bands.
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In this letter, we investigate how we can further improve the
soil detection performance by using both original and synthetic
bands. In particular, we explore the use of the extended
multiattribute profile (EMAP) [4], which has been proven to
significantly improve the land cover classification using MS
images.

Once EMAPs are generated in our context, we apply a
joint sparsity approach to both the original and EMAP bands.
In particular, spatial- and spectral-domain characteristics are
utilized in the joint sparsity approach. Extensive experiments
show that soil detection performance can be further improved
quite significantly.

There are two important contributions in our letter. First,
this is an important preliminary study that uses MS satellite
images to detect soil that may indicate the level of damage
of landslides, flooding, and so on. Second, this is a followup
work on illegal tunnel digging activity detection [3]. We inte-
grated the EMAP with a joint sparsity approach that yielded
unprecedented performance improvement in the soil detection.

The rest of this letter is organized as follows. Section II
summarizes the data and the concept of EMAP, followed by a
presentation of a joint sparsity-based approach to soil detection
in Section III. Extensive experimental results are given in
Section IV. Finally, a brief conclusion is provided in Section V.

II. DATA AND EMAP

A. Data Collection

Based on an earlier study [3] where known soils exist,
we retrieved three WV-2 images (eight bands), near the
border area between Tijuana and San Diego, collected on
March 19, 2010, October 11, 2010, and December 2, 2010,
containing new traces of soil that have been verified manually.
Furthermore, some images also contain new soil vestiges of
other activities (e.g., airport construction), which will be used
as training samples for our detection algorithms.

B. Extended Multiattribute Profile

EMAP [4] is an extended idea of AP, a method that has
recently been presented as an efficient tool for spectral–
spatial analysis of remote sensing images [5]. APs provide a
multilevel characterization of an image obtained by applying a
sequence of morphological attribute filters to model different
kinds of structural information on a single-band (or grayscale)
image. These attribute filters can be morphological operators
(the so-called features), such as thinning or thickening
operators that process an image by merging its connected
pixels. APs using different types of attribute features on
different threshold levels can be stacked together, generating
EMAPs [4].

Mathematically, given an input grayscale image f and a
sequence of threshold levels {T1, T2, . . . Tn}, the AP of f is
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Fig. 1. Eleven output bands obtained after applying EMAP to the first band
of an MS WV-2 image using thickening and thinning operators for “area”
attribute at two threshold levels, and “diagonal” attribute at three threshold
levels, respectively.

Fig. 2. Proposed soil detection approach.

Fig. 3. Soil detection via a joint-sparsity model.

obtained by applying a sequence of thinning and thickening
attribute transformations to every pixel in f

AP( f )={φ1( f ), φ2( f ), . . . φn( f ), f, γ1( f ), γ2( f ), . . . γn( f )}
(1)

where φi and γi (i = 1, 2, . . . , n) are the thickening and
thinning operators at threshold Ti , respectively. The EMAP
of f is then acquired by stacking two or more APs using
any feature reduction technique on MS/hyperspectral images,
such as purely geometric attributes (e.g., area, length of the
perimeter, image moments, and shape factors) or textural
attributes (e.g., range, standard deviation, and entropy) [4]

EMAP( f ) = {AP1( f ), AP2( f ) . . . APm( f )}. (2)

More details about EMAP can be found in [4].
Fig. 1 exhibits the 11 output bands obtained after applying

Fig. 4. Comparison of ROC curves of the results presented in Fig. 7(c)–(m)
for both original and EMAP data. Image collected on March 19, 2010.

Fig. 5. Comparison of ROC curves of the results presented in Fig. 8(c)–(m)
for both original and EMAP data. Image collected on November 11, 2010.

Fig. 6. Comparison of ROC curves of the results presented in Fig. 9(c)–(m)
for both original and EMAP data. Image collected on December 2, 2010.

the EMAP for the first band of an MS image. Fig. 1(a) shows
the original image; Fig. 1(b) and (c) shows the outputs by
a thickening operator for the two threshold levels of “area”
attribute at the sizes of 100 and 150 pixels, respectively;
Fig. 1(d) and (e) shows the outputs by a thinning operator for
the same two threshold levels of “area” attribute; Fig. 1(f)–(h)
shows the outputs by a thickening operator for the three
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Fig. 7. Comparison of soil detection performance on a test area extracted from a MS image collected on March 19, 2010. (a) Original RGB image.
(b) Manually selected target map (ground-truth). (c), (e), (g), (i), and (l) Soil detection performance via MSD, KerMSD, SVM, pixelwise SR, and JSR
methods for original 8-band MS data, respectively. (d), (f), (h), (k), and (m) Soil detection performance via MSD, KerMSD, SVM, pixelwise SR, and JSR
methods for extended 88-band EMAP data, respectively.

threshold levels of “diagonal” attribute with the diagonal
lengths of the bounding box at 50, 100, and 500 pixels, respec-
tively; and Fig. 1(i)–(l) shows the outputs by a thinning opera-
tor for the three same threshold levels of “diagonal” attribute.

III. SPARSITY-BASED APPROACH

TO SOIL DETECTION

Our proposed soil detection approach can be summarized
by using Fig. 2. The eight original VNIR bands in the WV-2
images are combined with 80 EMAP bands to form an 88-band
data cube. A joint sparsity-based detection algorithm is then
applied to detect soils. A dictionary of soil and background
pixels is built offline using 88-band training data.

Small neighborhoods of pixels usually belong to the
same class of materials. As such, we propose a joint spar-
sity model by gathering multiple pixels in small neighbor-
hood areas and enforce them to have the same sparsity
support of the signal representation over training samples.
Fig. 3 illustrates our soil target detection model via joint sparse
representation (JSR) [6]–[8]. Here, the input is an 88-band
stacked data cube containing both the original bands and
EMAP features.

Mathematically, let Y = [y1, y2, . . . , yK ] ∈ R
M×K be the

columnwise concatenated measurement matrix of K neighbor-
ing pixels collected from a small patch such as a 3×3 or 5×5
patch, DC = [d1

C , d2
C , . . . , dNC

C ] and DB = [d1
B, d2

B, . . . , dNB
B ]

contain the training samples of soil target and background,
respectively, and contain the training samples of soil target
and background, respectively, and D = [DC DB ] ∈ R

M×N

(where N = N C + NB ) be the combined target-background
dictionary. The K pixels in a spatial neighborhood area can
be compactly represented as

Y = [y1, y2, . . . , yK ]
= [DC DB ]

[
SC
SB

]
= DS (3)

where S = [s1, s2, . . . , sK ] ∈ R
N×K is the concatenation of

the coefficient vectors of the corresponding K pixels. In the

joint sparsity model, the sparse vectors {si }i=1,2,...,K share
the same sparse support and, thus, S is a sparse matrix with
only a few nonzero rows. The joint sparsity structure for the
soil target detection can be exploited by solving the following
optimization problem:

min
S

�Y − DS�F s.t. �S�row,0 ≤ s0 (4)

or it can be efficiently solved via a convex l1,q -norm mini-
mization problem

min
S

�S�1,q s.t. Y = DS (5)

where �S�row,0 is defined as the number of nonzero rows of
S, s0 denotes a predefined maximum row-sparsity level, �.�F
is the Frobenious norm of a matrix, and �S�1,q with q > 1 is a
norm defined as �S�1,q = ∑N

i=1 �si,:�q with si,:s being rows
of the matrix S, which encourages shared sparsity patterns
across multiple observations.

The problem in (4) can be approximately solved by
the simultaneous versions of the orthogonal matching pur-
suit (OMP) algorithm (simultaneous OMP or SOMP) [9]
or subspace pursuit (SSP), while the l1,q-norm row-sparse
regularization in (5) can be solved via the alternating direction
method of multipliers (ADMM) on the augmented Lagrangian
multiplier function [10]. In this letter, we favor SOMP because
of its fast and efficient computations. After the row-sparse
matrix S is solved, the label of the center pixel in the
neighboring area is then similarly determined to be either a
soil or background sample by the minimal total residual rule,
which selects the index of smaller residual with respect to the
soil target or background dictionary, where the residual of the
target dictionary is rC = �Y − DC SC�F , and the residual of
the background dictionary is defined rB = �Y − DBSB�F .

IV. EXPERIMENTAL RESULTS

We conducted experiments for the new soil detection
approach on both the original 8-band MS data and extended
88-band EMAP data using three test data sets collected on
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Fig. 8. Comparison of soil detection performance on a test area extracted from an MS image collected on October 11, 2010. (a) Original RGB image.
(b) Manually selected target map (ground-truth). (c), (e), (g), (i), and (l) Soil detection performance via MSD, KerMSD, SVM, pixelwise SR and JSR methods
for original 8-band MS data, respectively. (d), (f), (h), (k), and (m) Soil detection performance via MSD, KerMSD, SVM, pixelwise SR, and JSR methods
for extended 88-band EMAP data, respectively.

Fig. 9. Comparison of soil detection performance on a test area extracted from an MS image collected on December 2, 2010. (a) Original RGB image.
(b) Manually selected target map (ground-truth). (c), (e), (g), (i), and (l) Soil detection performance via MSD, KerMSD, SVM, pixelwise SR, and JSR methods
for original 8-band MS data, respectively. (d), (f), (h), (k), and (m) Soil detection performance via MSD, KerMSD, SVM, pixelwise SR, and JSR methods
for extended 88-band EMAP data, respectively.

three different days: March 19, 2010, October 11, 2010,
and December 2, 2010. Images were captured on the border
area between Tijuana and San Diego where many illegal
tunnel digging activities have been observed. In each test
set, the ground truth was selected by visually inspecting and
comparing the changes from different images captured during
a short time frame (normally several days or weeks) up to pixel
level. In all experiments, the soil target and background dic-
tionary were constructed by randomly selecting 1000 samples
from each soil-signature and background-signature training
sets taken from different days and areas, respectively (i.e.,
NC = NB = 1000). For our joint-sparsity model, a 5 × 5
square neighborhood patch was used and the sparsity level
is set to s0 = 5. We used twofold-cross validation on the
training samples to learn other parameters that give the best

results. Parameters in other methods have also been finetuned
to obtain the best performance.

Figs. 4–6 shows the receiver operating characteristic (ROC)
curves of all detection methods, including JSR [3], matched
subspace detector (MSD) [11], kernel MSD (KerMSD) [12],
support vector machine (SVM) [13], and pixelwise SR [14]
methods, for both 8-band original data (displayed by solid
lines) and 88-band EMAP data (displayed by dash lines). The
ROC curves clearly demonstrate the improvement of detection
performance on EMAP data in comparison to those on MS
data. One example is shown in Fig. 5. At a 5% false alarm
rate (FAR), the proposed joint sparsity approach with EMAP
can reach close to 75% detection accuracy, whereas those
methods without using EMAP can only reach less than 40%
accuracy. Another example is shown in Fig. 6. At a 5%
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TABLE I

COMPARISON OF DETECTION ACCURACIES ON MS AND EMAP DATA WITH FAR OF 10% ON THREE DIFFERENT
DAYS: MARCH 19, 2010, OCTOBER 11, 2010, AND DECEMBER 2, 2010

FAR, the proposed joint sparsity approach with EMAP can
reach over 80% detection accuracy, whereas those methods
without using EMAP can only reach less than 50% accu-
racy. Table I shows the comparison of the accurate detection
rates of all models at the FARs of 10% for the three test
sets. Some improvements are quite dramatic. For example,
for data collected on December 2, 2010, the JSR detection
accuracy with EMAP is 87.06%, which is 24% more than
that obtained using the original 8-band data. The results of
other detectors such as SVM also improved by 10%–40%. For
instance, for March 19, 2010 data, the MSD performance has
been improved from 26% to 68%. This clearly demonstrates
the effectiveness of expanding spectral dimensionality using
AP imposing spatial information on limited-spectral-resolution
data. In each experimental set, the visualized detection results
(exhibited in Figs. 7–9) on MS and EMAP data are compared
using detection methods mentioned earlier. It can be seen that
Fig. 7(m) displays the results of using the proposed approach,
and Figs. 7–9 display very crisp detection results, as compared
to results using other detectors. The visual comparisons shown
in Figs. 7–9 further corroborate the objective performance
metrics shown in Figs. 4–6.

V. CONCLUSION

We developed a new framework that incorporates jointly the
spatial- and spectral-domain information using EMAP bands,
derived from MS satellite images, for detecting anomalies and
applied it to soil detection. Extensive studies demonstrated that
the soil detection performance is very good in terms of ROC
curves.

One potential future direction is to combine a sparsity-based
approach with a deep learning-based approach [15] for soil
detection. Another direction is to apply the proposed approach
to fused Planet and WV images [16], which can provide higher
temporal resolution, for change detection [17], [18]. A third
direction is to integrate the proposed algorithm with damage
assessment software for accurate detection of damages due
to flooding, landslides, and so on. The fourth direction is to
apply the proposed approach to illegal tunnel digging activity
detection [3], [19]. Finally, we plan to investigate tent detection
in refugee camps near the Syrian–Jordanian border using the
proposed method here.
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