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Sentinel-2 and Sentinel-3 Intersensor Vegetation
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Abstract— This letter presents a novel intersensor vegetation
estimation framework, which aims at combining Sentinel-2 (S2)
spatial resolution with Sentinel-3 (S3) spectral characteristics
in order to generate fused vegetation maps. On the one
hand, the multispectral instrument (MSI), carried by S2, pro-
vides high spatial resolution images. On the other hand, the
Ocean and Land Color Instrument (OLCI), one of the instru-
ments of S3, captures the Earth’s surface at a substantially
coarser spatial resolution but using smaller spectral bandwidths,
which makes the OLCI data more convenient to highlight specific
spectral features and motivates the development of synergetic
fusion products. In this scenario, the approach presented here
takes advantage of the proposed constrained probabilistic latent
semantic analysis (CpLSA) model to produce intersensor veg-
etation estimations, which aim at synergically exploiting MSI’s
spatial resolution and OLCI’s spectral characteristics. Initially,
CpLSA is used to uncover the MSI reflectance patterns, which are
able to represent the OLCI-derived vegetation. Then, the original
MSI data are projected onto this higher abstraction-level repre-
sentation space in order to generate a high-resolution version of
the vegetation captured in the OLCI domain. Our experimental
comparison, conducted using four data sets, three different
regression algorithms, and two vegetation indices, reveals that the
proposed framework is able to provide a competitive advantage
in terms of quantitative and qualitative vegetation estimation
results.

Index Terms— Constrained probabilistic latent semantic analy-
sis (CpLSA), Sentinel-2, Sentinel-3, topic models, vegetation
estimation.

I. INTRODUCTION

THE Copernicus program is a joint initiative of the Euro-
pean Commission, the European Space Agency, and the

European Environment Agency in order to provide operational
monitoring information from space, useful for environment
and security applications. In this context, five different Sentinel
Earth observation missions have been planned to guarantee this
operational provision [1]. Among all the program resources,
Sentinel-2 (S2) and Sentinel-3 (S3) missions are focused
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on global monitoring services over terrestrial and aquatic
surfaces, using for this purpose high-resolution and midres-
olution multispectral imagery [2]. More specifically, S2 [3]
is a polar-orbiting mission, which comprises two identical
satellites: S2A, launched on June 23, 2015, and S2B, which
followed on March 7, 2017. Each satellite incorporates a
multispectral instrument (MSI), which provides a versatile set
of 13 spectral bands ranging from the visible and near infrared
(VNIR) to the shortwave infrared (SWIR). Four of these bands
(B02-B04, B08) are acquired at a spatial resolution of 10 m,
six bands (B05-B07, B08A, B11, B12) at 20 m and the
remaining three bands (B01, B09, B10) at 60 m. Analogously,
S3 [4] includes a pair of satellites, called S3A and S3B, where
the first one was launched on February 16, 2016 and the sec-
ond one was successfully launched on April 25, 2018. Both
satellites carry the Ocean and Land Color Instrument (OLCI),
which provides 21 bands (Oa01–Oa21) spanning from 390- to
1040-nm VNIR spectral range with bandwidths from 2.5 to
40 nm. Regarding the spatial resolution of the sensor, OLCI
has global resolution requirement of 300 m.

Although S2 and S3 missions have been designed to
provide global data products of vegetation, soil and water
cover, inland waterways and coastal areas, the spectral and
spatial differences between MSI and OLCI sensors make
each satellite more suitable for a particular application field.
On the other hand, the higher spatial resolution in S2 enables
the use of its products for characterization tasks, with
the requirement of a high level of spatial details such as
soil mapping or land use classification [5], S3 is able to
capture imagery using smaller spectral bandwidths, which
makes the OLCI data more convenient to highlight spe-
cific spectral responses that represent different features over
the Earth’s surface. Specifically, vegetation cover can exem-
plify this point [6]. In general, vegetation indices, such
as the normalized difference vegetation index (NDVI) [7] and
the soil-adjusted vegetation index (SAVI) [8], seek to exploit
the correlation between the maximum chlorophyll absorption
wavelength and the Red-Edge electromagnetic spectrum. As a
result, the smaller VNIR spectral bandwidth of the OLCI
sensor makes that fewer wavelengths are involved in the NDVI
and SAVI computations. This fact generates an enhanced
response for plant surfaces, which eventually increases the
instrument sensitivity to detect those image areas with certain
types of vegetation [4]. Precisely, these intersensor differ-
ences motivate the development of fused vegetation prod-
ucts to exploit MSI spatial resolution and OLCI spectral
features.

In the literature, different kinds of regression algo-
rithms have been successfully applied to conduct biophysical
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Fig. 1. CpLSA model.

parameter estimations within the context of Sentinel mis-
sions. Specifically, Verrelst et al. [9] review several state-
of-the-art machine learning regression algorithms for S2 and
S3 satellites, and Caicedo et al. [10] assess multiple linear
and nonlinear regression algorithms with a range of remotely
sensed data. Despite the value of these and other related
works, the regression process is often conducted from a single-
sensor perspective and, usually, they only consider simulated
Sentinel data [11]. This letter is focused on a more general
objective, where S2 and S3 operational products are combined
to generate fused vegetation maps with MSI spatial resolution
and OLCI spectral characteristics, that is, the objective of
this letter is based on exploiting the existing synergy between
S2 and S3 missions to generate improved vegetation estimates
of the Earth surface. On the other hand, standard regression
algorithms are able to generate such estimations by directly
relying on low-level reflectance values, the proposed approach
takes advantage of a newly proposed constrained probabilistic
latent semantic analysis (CpLSA) topic model to uncover two
different kinds of discriminating patterns in the S2 MSI spec-
tral domain: 1) constrained-topics that are able to reproduce
the vegetation detected by the S3 OLCI sensor and 2) standard-
topics that represent the rest of the nonvegetation components
in S2 MSI. In this way, image pixels are managed at a higher
abstraction level as a dual mixture of spectral patterns and,
hence, it is possible to infer more accurate high-resolution
vegetation maps at S2 MSI spatial resolution using only the
most S3 vegetation discriminating patterns. Our experiments
considering four data sets and two different vegetation indices
reveal the advantages of the proposed approach to generate
intersensor vegetation estimations when compared to three
different standard regression algorithms.

II. METHODOLOGY

A. Constrained Probabilistic Latent Semantic Analysis

Based on the incremental formulation of the asymmetric
probabilistic latent semantic analysis model [12], we define
a topic model extension, called CpLSA, which is specially
designed to relate intersensor information throughout the high-
level patterns uncovered by topics. Specifically, the proposed
model (Fig. 1) considers two diverging hidden random vari-
ables, that is, c and z, to represent constrained-topics and
standard-topics, respectively. Note that Nd is the number of
words in d , M is the total number of documents in the collec-
tion, and shaded nodes represent the observable variables in
the model, by analogy with the document analysis application
field [13].

In this letter, �1 ∼ {p(c|d)}, �2 ∼ {p(z|d)} and
� ∼ {p(w|c), p(w|z)} parameters are estimated by max-
imizing the complete log-likelihood function using the

expectation–maximization (EM) algorithm [14], which per-
forms two stages: 1) E-step where the likelihood expected
values are computed given the current estimation of the
parameters and 2) M-step where the new optimal values of the
parameters are calculated according to the current settings. The
E-step can be computed by using Bayes’ rule and the chain
rule as shown in (1) and (2). For the M-step, we calculate
CpLSA likelihood partial derivatives, set them as equal to zero,
and solve the equations in order to obtain (3)–(6)

p(c|w, d)
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where n(w, d) represents the number of times the word w
appears in the document d . The EM process is performed
as follows. First, p(w|c), p(w|z), p(c|d), and p(z|d) are
randomly initialized. Then, the E-step (1) and (2) and the
M-step (3)–(6) are alternated until the model parameters
converge. As default convergence settings, we use a 10−6

threshold in the log-likelihood or 1000 EM iterations.

B. Intersensor Vegetation Estimation Framework

The proposed S2 and S3 intersensor vegetation estimation
framework is made up of a two-step process (see Fig. 2):

1) CpLSA-Tra: In the first step, the proposed model is
used to learn coupled S2-S3 vegetation patterns at S3 spatial
resolution (i.e., the sensor with the lowest spatial resolution).
Specifically, the S2 input image (I2) is initially downsampled
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Fig. 2. Proposed Sentinel-2 and Sentinel-3 intersensor vegetation estimation framework.

to S3 nominal spatial resolution (R2) using a bicubic kernel.
Then, a vegetation index V is applied over the S3 input
image (I3) to generate the corresponding vegetation map
V3 = {V 1

3 , ..., V M
3 } with M pixel values. In addition, R2 is

vectorized in order to define topic model documents (d)
as image pixels, words (w) as spectral bands, and docu-
ment word-counts (n(w, d)) as pixel reflectance values. Then,
CpLSA is used over R2 by fixing �1 ∼ p(c|d) to a scaled
and normalized version of V3, as shown in (7) and (8),
in order to learn � ∼ {p(w|c), p(w|z)} parameter using
C constrained-topics and Z standard-topics. Note that the
conditional probability distribution p(c|d) defines how image
pixels are described by the target S3 vegetation map, p(w|c)
represents the reflectance patterns that generate this map and
p(w|z) contains the rest of the patterns that can be considered
noise from a vegetation-based perspective

V̂3 =
{

V i
3 − min(V3)

max(V3) − min(V3)

}
, ∀ i ∈ [1, M] (7)

�1 =

⎧⎪⎪⎨
⎪⎪⎩

V̂ i
3∑

i

V̂ i
3

⎫⎪⎪⎬
⎪⎪⎭ , ∀ i ∈ [1, M]. (8)

2) CpLSA-Tst: Once the � parameter has been estimated,
the proposed model is again applied to infer the output
vegetation map at S2 spatial resolution with the S3 spectral
properties, that is, CpLSA is used over I2 by fixing the �
parameter in order to generate �1 ∼ p(c|d) and the resulting
vegetation map as E2 = p(c|d).

III. EXPERIMENTS

A. Data Sets

In this letter, four pairs of S2 MSI and S3 OLCI data
products have been selected (Table I). The considered scenes
include different European areas with multiple types of vege-
tation to increase the data heterogeneity. All the L1C products
have been downloaded from the Copernicus Open Access
Hub platform (https://goo.gl/uXmPxL) and they have been
processed using the Sentinel Application Platform (SNAP)
software as follows. The MSI products have been resampled
to 20-m spatial resolution to manage the images as uniform
data cubes while reducing the product size. Then, they have
been atmospherically corrected using the Sen2Cor processor
with the default settings. The OLCI products have been
reprojected onto the corresponding S2 tiles. Besides, they have
been corrected using the Rayleigh correction procedure since

TABLE I

DATA SET DESCRIPTION

the complete atmospheric correction for land products is not
still available in the last SNAP release. Finally, each image
pair has been coregistered, obtaining a final image size of
5490 × 5490 × 13 pixels in S2 and 366 × 366 × 21 in S3.

B. Experimental Protocol

The experimental part of this letter aims at validating
the ability of the proposed approach to estimate S3 OLCI
vegetation from S2 MSI data. More specifically, the pro-
posed approach is compared to three standard regression
algorithms, i.e., linear regression [15], Support Vector Regres-
sion (SVR) with radial basis function (RBF) [16], and
Gaussian process regression (GPR) with squared exponen-
tial [17], when considering two different vegetation indices,
i.e., NDVI [18] and SAVI [8]. Regarding the experimental pro-
cedure, all the methods have been trained for each image pair
using the downsampled S2 image (R2) and the corresponding
S3 vegetation map (V3). For the considered regression algo-
rithms, we have used the corresponding MATLAB R2018b
implementations with automatic scale, data standardization,
and the default settings for the rest of the parameters. For
the proposed approach, C and Z model parameters have been
fixed to 1 and 3, respectively. Once the training process is
complete, the full-resolution S2 product (I2) is provided as a
test image to estimate the corresponding S3 vegetation map
at S2 spatial resolution (E2). Since there is no S3 vegetation
information available at the considered S2 pixel size (20 m),
we adopt a reduced reference assessment protocol to validate
the results [19]. In particular, this process consists of down-
sampling the original input images by the scaling ratio between
S2 and S3 (15×). Then, the output vegetation maps (E2) are
generated at the same spatial resolution than S3 OLCI (300 m),
which allows using the original S3 vegetation maps (V3) as a
reference for a quantitative performance evaluation. As the
evaluation metric, we use the mean squared error (MSE)
index due to its simplicity and quadratic error computation,
which penalizes predictions that substantially differ from the
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TABLE II

QUANTITATIVE MSE ASSESSMENT

TABLE III

STATISTICAL TEST ANALYSIS. (a) FRIEDMAN’S TEST.
(b) POST HOC HOLM’S METHOD

corresponding reference values. In addition, two statistical
tests, that is, the tests in [20] and [21], have been applied for
detecting statistical differences among the methods’ results.
It should be mentioned that both vegetation indices have been
scaled and normalized, as shown in (7) and (8), to unify their
corresponding value ranges for assessment purposes.

C. Results

Table II presents the quantitative evaluation of the estimated
vegetation results for the considered indices, data sets, and
methods in terms of the MSE metric. For each vegetation
index (i.e., NDVI and SAVI), the four considered data sets
are provided in rows, whereas columns represent the tested
methods, i.e., Sentinel-2, Linear, SVR, GPR, and Proposed.
Note that the first column measures the differences between
the vegetation captured by the S2 MSI sensor with respect
to the vegetation detected by S3 OLCI. The last column
reports the quantitative assessment of the proposed CpLSA-
based vegetation estimation framework and the last two rows
in each vegetation index provide the average MSE values
and test computational times. In addition, Table III presents a
summary of Friedman’s and Holm’s statistical tests. Regarding
the qualitative evaluation, Figs. 3 and 4 display the estimated
vegetation maps.

One of the first noteworthy points arises when comparing
the performance of the considered regression functions to
the vegetation result obtained by Sentinel-2: the quantitative
results reported in Table II reveal that all the tested regres-
sion functions, that is, Linear, SVR, and GPR, are able to
approximate the reference OLCI vegetation better than the
S2 MSI sensor, that is, using a regression function from the
original S2 data to the corresponding S3 vegetation indices
allows combining MSI spatial resolution and OLCI spectral
characteristics. This fact is also supported by the vegetation
maps displayed in Figs. 3 and 4, where it is possible to
see that directly computing NDVI and SAVI over S2 data

Fig. 3. NDVI qualitative evaluation results.

Fig. 4. SAVI qualitative evaluation results.

(Sentinel-2 column) generates a substantially different result
than the corresponding reference (Sentinel-3 column). Note
that the number of bands considered in NDVI and SAVI com-
putations is rather limited; however, the regression functions
are applied over the whole spectra, which allows for a better
estimation of the actual vegetation.

Regarding the overall performance of the tested meth-
ods, GPR yields a remarkable MSE average performance
(0.0173) when compared to the linear (0.0256) and SVR
(0.0314) regression results. The reduced spatial resolution of
S3, together with the straightforward nature of the NDVI
and SAVI indices, makes that the SVR regression function
with the RBF kernel is unable to achieve satisfactory results,
with the linear regression function obtaining an even better
average result. In the case of GPR, it has shown to be the
most robust regressor among the three tested ones (i.e., linear,
SVR, and GPR). Nonetheless, the proposed approach is able
to provide a competitive advantage from both quantitative and
qualitative viewpoints. On the one hand, the proposed CpLSA-
based framework achieves a consistent metric improvement
when estimating S3 vegetation from S2 data, reaching the best
MSE average performance (0.0109) over all the considered
methods. On the other hand, the vegetation maps provided by
the proposed approach are certainly the most similar to the
S3 data, providing NDVI and SAVI vegetation details that are
not estimated by any of the other considered methods. For
instance, it is possible to see in the UT row shown in Fig. 3
that the proposed approach is the only method able to retrieve
the NDVI vegetation detected at the top-right image corner.
A similar example can be found in the BR row shown in Fig. 4,
where all the considered regression functions struggle at
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capturing the coastal vegetation. These results are supported
by the conducted statistical analysis. In particular, Friedman’s
test [Table III(a)] ranks CpLSA in the first place, GPR in
the second, SVR in the third, and linear in the last position.
In addition, the computed p-value provides a high level of
significance to conduct a post hoc multiple comparison test.
Considering a confidence level of α = 0.10, Holm’s method
[Table III(b)] rejects the statistical equality hypotheses when
comparing the proposed approach to linear, SVR, and GPR.
Note that those hypotheses with unadjusted p-values ( p) that
are smaller than the adjusted Holm’s values are rejected. The
conducted analysis reveals that the performance improvement
of the proposed approach is statistically relevant. Nevertheless,
it should also be mentioned that the proposed approach is a
computationally demanding model and further research should
be conducted for its operational deployment.

In general, estimating the vegetation captured by the OLCI
sensor from the MSI raises the challenge of uncovering
information that is not present in the original S2 spectra, due
to the different spectral resolution of the S3 instrument. Note
that the smaller spectral bandwidths in the VNIR wavelength
allow the OLCI sensor to enhance those image areas with more
vegetation. Standard regression algorithms attempt to directly
map the S2 spectra onto the vegetation values detected by S3.
However, this straightforward approach only relies on the low-
level reflectance values acquired by the coarser spectral resolu-
tion sensor, which eventually limits the resulting performance
under the most challenging scenarios. The proposed approach
uses the CpLSA semantic characterization space to relieve
this lack of spectral information by uncovering reflectance
latent patterns in the S2 spectral domain and their relationship
with the S3 spectral values extracted during the training
stage. In particular, CpLSA has been specifically designed
to uncover two kinds of patterns: c (constrained-topics) that
aim at reproducing S3 vegetation and z (standard-topics) that
represent the rest of the nonvegetation components in S2.
Then, it is possible to isolate the S2 reflectance patterns that
are able to represent the S3 vegetation (c) from noisy patterns
that do not help to map vegetation. In other words, each
S2 image pixel is managed as a dual composition of spectral
patterns instead of a collection of raw reflectance values, which
represents the input data using the most discriminative patterns
of vegetation from S3.

IV. CONCLUSION

This letter has presented an intersensor vegetation estima-
tion framework based on topic models to effectively estimate
Sentinel-3 (S3) vegetation from Sentinel-2 (S2) data. On the
one hand, the S3 OLCI sensor allows obtaining low-resolution
vegetation estimations that highlight those areas with more
vegetation, due to its smaller spectral bandwidths. On the other
hand, the S2 MSI is able to generate higher spatial resolution
vegetation maps, but with a different sensitivity to the near-
infrared wavelength. On the other hand, standard regression
algorithms make use of low-level S2 reflectance values to
directly estimate the S3 vegetation, the proposed approach
takes advantage of the CpLSA model to discriminate those
S2 reflectance patterns that are useful to retrieve S3 vege-
tation at S2 spatial resolution. Our experiments, conducted
using four coupled S2 and S3 data products, reveal that the

presented framework provides competitive advantages, from
both quantitative and qualitative perspectives, with respect
to other regression functions available in the literature. The
main conclusion that arises from this letter is the potential
of probabilistic topic models to uncover intersensor patterns,
useful to estimate S3 vegetation from S2 data. Although our
results are quite encouraging, more research work is required
in future developments. Specifically, our future work is aimed
at extending this work to different sensors, biophysical para-
meters, and deep fusion architectures.
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