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Abstract Spectral unmixing is a very important technique

for remotely sensed hyperspectral unmixing. Since more

hyperspectral applications now require real or near real-

time processing capabilities, fast spectral unmixing using

field-programmable gate arrays (FPGAs) has received

considerable interest in recent years. FPGAs can provide

onboard, high computing performance at low power con-

sumption. Another important characteristic of FPGA-based

systems is reconfigurability, which makes them more

flexible to process different kind of scenes. Pure signature

(endmember) extraction is a fundamental step in spectral

unmixing, which has been tackled using the maximum

volume principle by several algorithms, most notably

N-FINDR and simplex growing algorithm (SGA). These

algorithms find out the simplex with maximum volume as a

mechanism to extract endmembers. However, a previous

dimensionality reduction step is generally required, which

introduces information loss and additional computational

burden. To address these issues, in this work we introduce

a new volume calculation formula and further develop a

new real-time implementation of a maximum simplex

volume algorithm (called RT-MSVA). The proposed RT-

MSVA does not need dimensionality reduction, so all

spectral bands can be used without losing any information

to ensure robust endmember extraction accuracy. Experi-

ments with synthetic and real hyperspectral images have

been conducted to evaluate the accuracy and computational

performance of our proposed method. Our experimental

results indicate that proposed FPGA-based implementation

significantly outperforms the corresponding software ver-

sion and achieves real-time processing performance in the

considered problem. It also exhibits better endmember

extraction accuracy and comparable performance to other

available techniques, such as a real-time implementation of

a simplex growing algorithm (RT-FSGA).

Keywords Hyperspectral imaging � Endmember

extraction � Field-programmable gate array (FPGA) � Real-
time maximum simplex volume algorithm (RT-MSVA)

1 Introduction

Hyperspectral imaging has been widely used in remote

sensing during recent years [1–3]. It provides a data cube

containing hundreds of spectral bands for a single scene,

containing a wealth of information that cannot be captured

by other sensors such as multispectral instruments.

Hyperspectral unmixing is a key technique in hyperspectral

data exploitation and has been widely studied due to the

common existence of mixed pixels in hyperspectral images

[4, 5]. The linear mixture model (LMM) is frequently

adopted to describe mixed pixels in hyperspectral scenes,

assuming that the spectrum of each mixed pixel can be
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expressed as a linear combination of several endmembers

[6]. LMM uses the simplest possible way to describe mixed

pixels, ignoring multiple scattering effects between end-

members. The linear mixture model can be described as

follows:

X ¼ E� AþW ð1Þ

where X ¼ x1; x2; . . .; xn½ � is a hyperspectral image with a

total of n pixels, E ¼ e1; e2; . . .; ep
� �

is the endmember

matrix, A ¼ a1; a2; . . .; an½ � is the abundance matrix, and

W ¼ w1;w2; . . .;wn½ � is an error matrix.

The hyperspectral processing chain can be summarized

into three main steps: dimensionality reduction, endmem-

ber extraction, and abundance estimation. Dimensionality

reduction is conducted to reduce data volume and is

implicitly used also to estimate the number of endmem-

bers. However, this step has some drawbacks as discussed

later. How to extract a proper set of pure spectral signatures

(endmembers) from hyperspectral images is widely regar-

ded as the key task in LMM [7].

There are three main approaches for endmember

extraction: geometrical, statistical, and sparse regression

based [4]. Geometrical methods are based on the assump-

tion that the mixed pixels lie inside of a simplex in which

the corners are the endmembers. In other words, the end-

members are assumed to be on the vertices of the data

simplex. Many state-of-the-art algorithms have been

developed and proved effective to solve this problem,

including pixel purity index (PPI) [8], vertex component

analysis (VCA) [9], iterative error analysis (IEA) [10],

N-FINDR [11], and simplex growing algorithm (SGA)

[12]. PPI projects the data pixels onto a large set of random

skewers and counts number of pixels resulting in extreme

projections. Those pixels with the highest scores are con-

sidered to be the endmembers. This algorithm has low

computational complexity, but needs human intervention.

In turn, VCA projects each pixel to the hyperplane formed

by the previously extracted endmembers and aims to find

the largest projection. IEA minimizes the reconstruction

error by iteratively extracting endmembers as those pixels

that result in maximum error values.

N-FINDR and simplex growing algorithm (SGA) aim at

finding the endmembers by calculating the maximum vol-

ume formed by pixels in the original hyperspectral image.

These two algorithms have their own strengths and weak-

nesses. N-FINDR can extract endmembers automatically

with good accuracy but, in its initialization stage, the initial

set of pixels is generated randomly which could make the

extraction result inconsistent among different algorithm

runs. Another drawback of N-FINDR is that it needs to

traverse all the possible combinations of pixels in the image

(considered as endmembers). As a result, the computational

complexity is high and increases dramatically with an

increase in the number of endmembers. On the other hand,

the SGA extracts one endmember in each iteration, which is

not an exhaustive search but saves a lot of time. However,

the SGA shares a drawback with N-FINDR: for calculating

the determinant associated with the volume computation, the

matrix formed by the set of selected pixels must be a square

matrix. This means that a previous dimensionality reduction

step must be accomplished before the main loop of the

algorithm, which takes significant time and computing

resources leading to a loss of information while removing

most of the spectral bands of the data set. Some recent works

have specifically focused on the aforementioned issues. An

algorithm using a new determinant calculation formula was

proposed in [13, 14] which is called maximum simplex

volume algorithm (MSVA). A method to simplify the

MSVA algorithm was presented in [15], which reduces the

computational complexity and makes it amenable for real-

time applications.

An important challenge for hyperspectral image analysis

is the processing speed. The fast development of new

sensors leads to improved spectral, spatial, and temporal

resolutions, together with increased data volumes [16]. The

resolution increase provides more detailed information, but

demands fast computing solutions at the same time.

Hardware accelerators play an important role in high-per-

formance computing for remote sensing. Most notably,

clusters [17, 18] and specialized hardware devices such as

commodity graphics processing units (GPUs) [19] and

field-programmable gate arrays (FPGAs) [20–22] have

been used for accelerating hyperspectral computations.

There is some excellent work with GPUs on hyperspectral

unmixing in [23, 24]. Both GPUs and FPGAs provide

highly desirable features such as low weight and high

computing performance, but FPGAs also offers reconfig-

urability and lower energy consumption ratios, in addition

to radiation tolerance that still cannot be achieved by GPUs

[25].

An FPGA is an integrated circuit whose logic blocks can

be defined and configured by users repeatedly. That means

that FPGAs offer the possibility of adaptively selecting a

proper hyperspectral algorithm to be applied from the

control station on Earth anytime [26]. FPGAs also exhibit

an architecture that is suitable to implement pipeline pro-

cessing [27]. FPGA-based hyperspectral image processing

has aroused wide interest in the hyperspectral image

community, and recent works have explored FPGA-based

implementations of endmember extraction algorithms. For

instance, the N-FINDR algorithm has been implemented on

FPGAs in [28, 29]. The SGA has an improved version (RT-
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FSGA) that has also been implemented on FPGAs for real-

time performance in [30] in order to meet the requirements

of hyperspectral missions subject to near real-time

constraints.

In this paper, we develop a new real-time implementa-

tion of MSVA (called RT-MSVA), which intends to

overcome the aforementioned limitations of maximum

volume algorithms such as N-FINDR and SGA. The pro-

posed RT-MSVA has three important advantages: (1) it

exploits all the information provided by the full set of

spectral bands in the original data, without a prior dimen-

sionality reduction; (2) its computational complexity is

amenable for strictly real-time processing; (3) it is suit-

able for being implemented on FPGAs. The newly devel-

oped RT-MSVA has been implemented on a Kintex-7

FPGA and tested using both synthetic and real hyper-

spectral images. The obtained results show that the pro-

posed algorithm exhibits better performance than both

N-FINDR and RT-FSGA.

The remainder of the paper is organized as follows.

Section 2 describes the MSVA algorithm and our proposed

RT-MSVA implementation, respectively. Section 3

describes the hardware implementation of our newly pro-

posed algorithm, providing details about the architecture of

the complete system and the main processing modules. In

Sect. 4, we first describe the synthetic and real hyper-

spectral images used in the experiments and then discuss

the obtained processing results and analyses. The compu-

tational performance is particularly evaluated in this sec-

tion. Section 5 concludes the paper with some remarks and

hints at plausible future research lines.

2 Real-time maximum simplex volume algorithm
(RT-MSVA)

2.1 Volume calculation in N-FINDR and SGA

N-FINDR is one of the most commonly used endmember

extraction algorithms. The algorithm uses the volume of

the simplex containing the data as a criterion to identify

endmembers. The procedure begins with randomly select-

ing a set of pixels as the initial endmembers. Then, every

initial endmember is replaced by other pixels in the image

until the maximum volume is found. The randomly chosen

initial endmembers may lead to inconsistent results, and

the iterative volume calculation adds a heavy burden in

terms of computation. SGA intends to address these issues

by adding one vertex at a time to the target simplex, until

reaching a desired number of endmembers. This reduces

the computational complexity tremendously. The initial

endmembers are fixed to the two pixels with the largest

distance. Although the two algorithms have different iter-

ative procedures, they use the same way to calculate the

simplex volume. In other words, they consider that the

volume defined by the set of endmembers e1; e2; . . .; ep
� �

can be calculated as follows:

E ¼ 1 1 � � � 1

e1 e2 � � � ep

� �
; ð2Þ

V Eð Þ ¼ 1

p� 1ð Þ! abs Ej jð Þ; ð3Þ

where the determinant of matrix E in (2) is calculated using

expression (3). This brings the limitation that E should be a

square matrix. Namely, the number of spectral bands of

endmembers should be p - 1. Generally, the number of

endmembers p is much smaller than the number of spectral

bands, so a dimensionality reduction step is necessary prior

to execution of both N-FINDR and SGA. This not only

increases the processing time and computing resources

used, but may also remove some potentially relevant

information contained in the original data. To overcome

these drawbacks, a new volume formula is introduced in

the calculation of simplex volume.

2.2 MSVA algorithm

As mentioned in the previous subsection, a square matrix

should be created before the determinant-based calculation

of the volume. In this section, instead of reducing the

dimensionality of the image data, we introduce a new

formula that takes advantage of the measure matrix formed

by multiplying a non-square matrix by its transpose [14].

Let us suppose that endmembers e1; e2; . . .; ep
� �

compose

the vertices of a simplex. If we let v1 ¼ e2 � e1,

v2 ¼ e3 � e1,…, vp�1 ¼ ep � e1, then v1; v2; . . .; vp�1

� �

can be seen as a group of vector bases in the spectral

feature space, and the simplex formed by e1; e2; . . .;ep
� �

will be a part of the p - 1-dimensional parallel polyhedron

expanded by this vector base set. The volume of the

polyhedron is closely related to the determinant of the

measure matrix:

• When p - 1 = 1, the polyhedron is just the line

segment defined by vector v1. The length of the line

segment is defined as the norm of v1, i.e.,

Vp v1ð Þ ¼ v1k k ¼
ffiffiffiffiffiffiffiffiffiffi
vT1v1

q
; ð4Þ

• When p - 1 = 2, the proposed polyhedron is a paral-

lelogram expanded by v1 and v2. The area is:
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Vp v1; v2ð Þ ¼ v1k k � v2k k � sin\v1; v2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det
vT1
vT2

	 

v1 v2ð Þ

	 
s

;
ð5Þ

which equals the determinant of the measure matrix.

• For p - 1[ 2, it can be proved that the volume of the

proposed p - 1-dimensional parallel polyhedron

always equals the square root of the determinant of

the measure matrix.

The relation of the volume of simplex (Vs) and the

volume of the parallel polyhedron (Vp) is as follows:

Vs v1; v2; . . .; vp�1

� �
¼ 1

p� 1ð Þ!Vp v1; v2; . . .; vp�1

� �
: ð6Þ

Hence, the volume of a simplex whose p vertices are

e1; e2; . . .; ep can be calculated as follows:

A ¼ WTW; ð7Þ

V e1; e2; . . .; ep
� �

¼ 1

p� 1ð Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Að Þj j

p
; ð8Þ

where W ¼ e2 � e1; e3 � e1; . . .; ep � e1
� �

and A is the

measure matrix. Due to the fact that A is a square matrix in

any case, no dimensionality reduction is needed before

endmember extraction for a hyperspectral data set with

L([p) bands. This new method of endmember extraction is

generally called MSVA [15].

2.3 Real-time MSVA algorithm (RT-MSVA)

Before describing our real-time implementation, it is

important to remind that MSVA does not need any

dimensionality reduction and that it can effectively exploit

all the spectral bands in the original hyperspectral image.

This algorithm has been implemented on GPUs [31] to

accelerate the computation. However, calculating the deter-

minant of each matrix still involves significant computational

complexity, and this operation is not suitable for real-time

applications on FPGAs. To simplify determinant calculation

in MSVA, a method based on partitioned determinant oper-

ation is proposed in [15]. By using elementary transformation,

themeasurematrixA can be partitioned to two diagonal parts.

In this way, the determinant of A can be calculated as the

multiplication of a constant partitioned determinant and a

changing value depending on the input pixel. This method

reduces the computational complexity and enhances the sta-

bility as well. However, the inverse matrix of A must be cal-

culated at the beginning of each outer loop, and this is also a

problem for being implemented on FPGAs. To address this

issue, we use Woodbury’s identity [32] as follows:

Aþ uvT
� ��1¼ A�1 � A�1uvTA�1

1 + vTA�1u
; ð9Þ

det Aþ uvT
� �

¼ 1þ vTA�1u
� �

det Að Þ; ð10Þ

where A is the original square matrix and uvT is the outer

product of two vectors: u and v. Then, A ? uvT is the new

matrix that replaces one row or one column.

Let W¼ e2�e1;e3�e1;...;ej�e1
� �

, and A¼ WTW o
o 1

	 


in which o is the zero vector. When a new pixel r is

updated, the last column and the last row of A should be

replaced. This means that the inverse matrix and the

determinant can be updated by using Woodbury’s identity

twice in each iteration. The vector definitions are given

by:

v1 ¼ u2 ¼ 0; . . .; 0; 1½ �T ð11Þ

u1 ¼ e2 � e1ð ÞT r� e1ð Þ; . . .; r� e1ð ÞT r� e1ð Þ
h iT

ð12Þ

v2 ¼ r� e1ð ÞT e2 � e1ð Þ; . . .; r� e1ð ÞT ej � e1
� �

;�1
h iT

ð13Þ

and the final matrix is given by the following term:

Aþ u1v
T
1 þ u2v

T
2 ¼ e2 � e1; . . .; ej � e1; r� e1

� �T

e2 � e1; . . .; ej � e1; r� e1
� �

:
ð14Þ

It should also be noted that all the determinants in the

inner loop are updated from the same initial value det_old,

which equals to det_max in the last outer loop. Instead of

updating V e1; . . .; ei�1; rið Þ from V e1; . . .; ei�1; ri�1ð Þ, the
formerly computed results will not influence the latter

results within the inner loop. In this way, the accumulated

error can be significantly reduced. Another improvement is

in the initialization stage. Selecting a proper set of initial

endmembers is an important task for maximum volume

algorithms [33]. As reported in [30], the first endmember

can be generated by finding the pixel vector with maximum

length.

The new method proposed in this paper is called RT-

MSVA, which can achieve real-time processing capability

as shown in subsequent sections. The RT-MSVA algorithm

takes advantage of the simplex growing method in [12]. It

first finds an initial endmember and then extracts one end-

member in each outer loop. The RT-MSVA can be sum-

marized by the algorithmic description given in Algorithm

1, which is intended to facilitate reproducibility of our

results.
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Algorithm 1: RT-MSVA 

Input: hyperspectral image data r, number of 

endmembers p 

Step1: initialization: calculate the vector length of each 

pixel r, the pixel that provides the maximum length is the 

first endmember 1e . Let 0i = ; 

Step2: let 1i i= + , and start the inner loop; 

Step3: For each pixel r, calculate the volume 

1 -1( ,..., , )iV e e r  defined by (7) and (8); 

Step4: A variable det_max is used to store the largest 

determinant within this inner loop. Compare 

1 -1( ,..., , )iV e e r  with det_max, if 1 -1( ,..., , )iV det_max>e e r , 

let 1 -1( ,..., , )idet_max V= e e r . The pixel that provides the 

largest 1 -1( ,..., , )iV e e r  is extracted as endmember i e ; 

Step5: if i p≤ , then go to step 2. Otherwise, the subset 

{ 1 2 pe ,e , ... , e } is the set of desired p endmembers; 

Output: endmembers { 1 2 pe ,e , ... , e }. 

3 FPGA implementation of RT-MSVA

The hardware architecture of the complete hardware sys-

tem is shown in Fig. 1. The volume of hyperspectral

images is quite large, so a DDR3 synchronous dynamic

random access memory (SDRAM) outside the FPGA chip

is used to store the whole hyperspectral image. A memory

interface generator (MIG) is used to control the SDRAM

and register the input data with the help of a first-in-first-

out (FIFO) queue. The FIFO has been set to contain two

complete rows of the hyperspectral image which builds a

ping-pong buffer. Every time a row has been processed

(i.e., the FIFO is half empty), and a new data row is

brought in. This ensures that the system will not be idle

waiting for data and ensures a complete processing work-

flow. It should be noted that each pixel in the hyperspectral

images will be calculated p times throughout the whole

process, so the FIFO needs to read the image data p times

as well.

The hardware architecture of RT-MSVA can be simply

described by three units: the control unit, the determinant

calculation module, and the compare and update module.

The control unit is used to coordinate all the other units,

namely to determine when the former unit transmits its data

to the next unit, and when to get a new pixel from the

SDRAM. The determinant calculation module plays an

important role in the system, as it represents most of the

computation. The compare and update module is used to

decide whether the outcome of every loop is effective, and

to update the parameters that other units need. A pixel r is

read by the determinant calculation module through the

MIG and obtains the determinant det_new and the corre-

sponding inverse matrix inv_new. In the compare and

update module, the newly generated determinant det_new

is compared with the former maximum det_max. If

det_new[ det_max, then we let det_max = det_new and

update the corresponding inverse matrix and pixel coordi-

nates. Otherwise, the det_new for the current pixel is

abandoned and we start the calculation of the next pixel.

Figure 2 describes the data flow of the determinant

calculation module. The inputs of this module are the new

pixel r, the extracted endmembers, and the intermediate

values det(A) and A-1 (namely det_old and inv_old).

Woodbury’s identity should be used twice in each iteration

so that the inputs of the second round are effectively the

determinant and inverse matrix calculated at the first round.

These intermediate values are named as det_temp and

inv_temp. We use the IP core generator to generate the

multipliers and dividers. We can choose between using

lookup tables (LUTs) or digital signal processors (DSPs) to

construct these components in the graphical interface. With

Fig. 1 Hardware system adopted for the implementation of RT-

MSVA on FPGAs

J Real-Time Image Proc (2019) 16:1681–1694 1685

123



the ultimate goal of making full use of the calculation

resources on the chip, some components have been reused

two or more times within this module. It should be noted

that because only the last element in vector v is 1 and the

rest are 0, so the calculation of vT multiplied by A-1 can be

simplified as selecting the last line of matrix A-1. Figure 3

shows the architecture used to store results and values. As

shown in Fig. 3, the new pixel r is read from the SDRAM

and stored in a FIFO, while the other inputs and outputs are

all stored in block RAMs. The final output is the set of

endmembers which are also stored in a block RAM.

At this point, we provide a step-by-step description of

how the proposed algorithm is implemented on our con-

sidered hardware architecture.

• First of all, the FIFO brings in two rows of data. Then, it

sends them to the initialization module (one by one) to

calculate the length of the vector. The pixel vector that

provides the maximum length and its position are

registered, and this pixel is labeled as the first endmem-

ber: e1.When calculating the last row of data, the first row

is brought into the FIFO again for the next step.

• In order to get the second endmember, the control unit

orders the FIFO to send data to the initialization module

so that the distance between every pixel and the first

endmember e1 can be calculated. The pixel with the

largest distance is labeled as the second endmember: e2.

The line segment between e1 and e2 can be regarded as

a two-dimensional simplex, and the distance corre-

sponds to the volume of the simplex. This distance is

stored in variable det_old for the next step, and its

reciprocal is stored in variable inv_old.

• At this point, the initialization stage has finished and

the system now finds the ith endmembers

(i = 3, 4, …, p). The FIFO will send the necessary

data to the determinant calculation module. The main

part of this module can be reused twice for each pixel.

The determinant and inverse matrix obtained in the first

round are stored in the block RAM and taken as the

inputs to the second round. The final output corre-

sponds to the volume of the simplex formed by pixel

r and the extracted endmembers. In the compare and

update module, the absolute value of the determinant is

compared with the previously stored det_max value. If

the first one is greater, then the variables det_max and

inv_max will be updated, and the pixel and its

corresponding position are also registered.

Fig. 2 Data flow of the determinant calculation module

Fig. 3 Storage architecture used for results and intermediate values
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• When all the pixels in the image have been processed,

the registered pixel is extracted as endmember e1. The

new endmember and its position are written in the

block RAM. If i\ p, we let i = i ? 1. At the same

time, the input values det_old and inv_old are updated

by det_max and inv_max values. If i = p, this means

that all the endmembers have been extracted, and the

process is over. The endmembers and their correspond-

ing coordinates are sent out via the peripheral compo-

nent interconnect express bus (PCIe).

To further optimize this system, a pipeline implemen-

tation has been adopted for the determinant calculation

module. Figure 4 shows a schematic view of this approach.

Let us assume that the determinant calculation processing

chain can be divided into three steps and that the pro-

cessing time of each step T. For a normal processing mode

(in which these steps are carried out one by one in

sequence), the determinant calculation module has an

output interval of 3*T, but for the pipeline mode (in which

these steps are executed simultaneously), the interval can

be reduced to T. A FIFO is used to register the output of

each step. In brief, pipeline technology can significantly

reduce the idle time, thereby gaining a remarkable speedup.

An important issue we must pay attention to is the

arithmetical precision. FPGAs can provide both floating-

point operations and fixed-point operations. Data in float-

ing-point format can provide more details, but it uses many

more computing resources than fixed-point operations.

These aspects are crucial for real-time processing. The

fixed-point format is simpler and needs less logic resources

in terms of both storing the data and performing calcula-

tions. This implies that operations in fixed-point format

require less processing time. On the other hand, FPGAs and

other chips are all discrete systems, which means that the

data stream in these chips is given by discrete values. In

this implementation, we have used fixed-point format

under the assumption that the details that are lost with

regard to using floating-point format are negligible in our

context.

Figure 5 illustrates the adopted data structure in fixed-

point format. To reduce the computational resources and

processing time, the data size in this module should be

as small as possible under the premise of ensuring

accuracy. The input data are given by reflectance units

smaller than 1, so we use a 16-bit binary format to

represent the data. The highest bit is the sign, and the

next bit expresses the integer part, while the lower 14

bits express the fractional part. By multiplying W by its

transpose, every element in WTW and its determinant

can be extremely small, and the elements in its inverse

matrix may be very large at the same time. As a result,

we need to find a compromise for the size of the data. A

32-bit format with 16 bits as fractional part is therefore

used to represent elements in the inverse matrix, while a

32-bit format with 24 bits as fraction part is used for the

determinant.

4 Experimental results and analysis

The hardware architecture has been implemented on a

Xilinx Kintex-7 FPGA KC705 Evaluation Kit (see Fig. 6).

The XC7K325T of Kintex-7 series has 50,950 slices,

326,080 logic cells and 407,600 CLB flip-flops available,

and also a total block RAM of 16,020 kb. It can also offer

CLK

Input

Step1 r1 Step2 r1 Step3 r1

Output

r1 r2

Determinant
calculation 

module

XXXXXX

Step1 r2

determinant(r1)

Step1 r1 Step1 r2 Step1 r3

r1 r2

XXXXXX determinant(r1)

CLK

Input

Step2 r1 Step2 r2 Step2 r3

Step3 r1 Step3 r2

r3

Sequence

Pipeline 

Output

Sub-module1

Sub-module2

Sub-module3

determinant(r2)

Step3 r3

...

...

...

...

T
Fig. 4 A schematic view of the

pipeline implementation

adopted for the determinant

calculation module
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up to 1866 Mb/s DDR3 data rate, and this makes the

memory read/write bandwidth no longer the bottleneck in

speeding up. The Kintex-7 family of FPGAs provides an

ideal balance in terms of integration, price, performance,

and power consumption and can double the price–perfor-

mance ratio with half the power consumption as compared

with the Xilinx Vertex-6 family. The architecture is

implemented using the VHDL language. We use ISE 14.2

as the developing environment and Modelsim SE 10.1a to

perform simulation. The comparative experiments are

conducted on MATLAB in an Intel Core i3 CPU, with a

working frequency of 3.5 GHz. Both synthetic and real

hyperspectral images will be used to assess endmember

extraction accuracy. The real data are also used to analyze

the computational performance and the resource utilization

of our implementation.

The remainder of this section is organized as follows. In

Sect. 4.1, we describe the hyperspectral images that will be

used in the experiments. In Sect. 4.2, we discuss the

obtained results and provide an evaluation of endmember

extraction accuracy in comparison with the MATLAB

version. Section 4.3 provides an analysis of the computa-

tional performance of our hardware implementation.

4.1 Hyperspectral image data sets

Two sets of hyperspectral images have been used in our

experiments. One is a synthetic image, and the other is a

real hyperspectral data set. Both data sets have ground truth

that can be used to evaluate the endmember extraction

accuracy.

4.1.1 Synthetic images generated using fractals

The synthetic images used in this experiment are given by a

set of five 100 9 100-pixel hyperspectral scenes generated

using fractals. These synthetic hyperspectral scenes have

been created as follows. First, random spatial patterns are

generated using fractals. Then, these images are divided

into a set of clusters, using the k-means algorithm. Finally,

a set of spectral signatures are randomly selected from the

USGS spectral library and assigned to each cluster. The

purest pixels are arranged in the center of each region,

while pixels close to the edge of regions are heavily mixed

[34]. The number of endmembers is fixed to p = 9. Fig-

ure 7 shows a false color image of the five synthetic scenes

in the experiments. Figure 8 shows the nine spectral sig-

natures present in the first synthetic scene, called Fractal 1
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15 13
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1531 16 0
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2331 24 0

14

30

30

Signed 16 bits: image data r, endmembers

Signed 32 bits:  
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Fig. 5 Data structures used in

our FPGA implementation of

RT-MSVA

Fig. 6 Xilinx KC705

Evaluation Kit with a

XC7K325T FPGA
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(namely, alunite, dumortierite, halloysite, kaolinite CM9,

kaolinite KGa1, muscovite, nontronite, pyrophilite, and

sphene).

4.1.2 Real hyperspectral image

The real hyperspectral image used in our experiments was

collected by the AVIRIS sensor [35] over the Cuprite

mining district, Nevada, in 1997. The data are available in

reflectance units after atmospheric correction and have 224

spectral bands in the range from 400 to 2500 nm. A subset

of 350 9 350 pixels is used in this experiment. According

to [30], bands 1–3, 105–115, and 150–170 have been

removed from the data set because of water absorption and

low SNR, retaining 189 spectral bands. This site has been

well studied mineralogically and has five representative

pure minerals in this region: alunite, buddingtonite, calcite,

kaolinite, and muscovite. The spectral signatures of these

minerals are available in the USGS spectral library and will

be used in the following section to assess endmember

extraction accuracy. The virtual dimensionality (VD) is

used in this work to estimate the number of endmembers in

the AVIRIS Cuprite image, which is calculated to be

p = 22 as reported in [36, 37].

4.2 Endmember extraction accuracy analysis

In this subsection, we evaluate the endmember extraction

accuracy of our proposed hardware implementation of RT-

MSVA using the synthetic and real data sets described

above. Two metrics have been widely used to quantita-

tively evaluate endmember extraction accuracy. One is

comparing the endmembers extracted by the proposed

algorithms with the reference spectral signatures using the

spectral angle (SA) [38]. Another one is reconstructing the

hyperspectral image by using the extracted endmembers

and comparing it with the original image using the root-

mean-square error (RMSE). Each endmember or reference

spectral signature can be seen as a vector, so the SA is

calculated as the vector angle between the most similar

endmember extracted and the pure spectral signature

Fig. 7 False color composition

of the five synthetic images used

in experiments

Fig. 8 The nine USGS library signatures used to create the synthetic

scene called ‘‘Fractal 1’’
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contained in the library. A smaller SA score indicates

higher similarity between the two vectors, which means

that the endmember spectrum is closer to the reference

signature. In this work, the fully constrained least squares

(FCLS) [39] method is used to get the corresponding

abundances for each endmember. As shown in Eq. (1), a

hyperspectral image can be rebuilt by multiplying end-

member matrix E and the abundance matrix A. The

reconstructed image has some differences with the original

image, and the RMSE accounts for the error between these

two images. Low RMSE means high similarity between the

reconstructed and the original image, which further indi-

cates better endmember extraction accuracy. Before

describing our experiments, we emphasize that we have

included comparisons to other algorithms such as

N-FINDR, SGA, and MSVA (implemented in MATLAB).

Table 1 shows the average SA scores between the

endmembers extracted by the aforementioned algorithms

and the USGS reference spectral signatures across all the

five synthetic scenes. The RMSE obtained in the recon-

struction using the extracted endmembers is also reported.

The best score for each metric is bolded in the table. Nine

endmembers are extracted and each of them corresponds to

a USGS library signature known a priori. The SA score of

each algorithm in Table 1 is the average SA of all nine

endmembers, which is given in degrees. For the N-FINDR

algorithm, the initial set of endmembers is randomly

selected and this makes the result inconsistent. To have a

fair comparison, the experiments with N-FINDR have been

conducted five times with the same image data and

parameters, and we take the average value as the final

outcome. The hardware implementation of RT-MSVA

gives exactly the same result as the software version for the

considered synthetic scenes.

Figure 9a, b, respectively, shows the endmembers

extracted from the AVIRIS Cuprite scene by RT-MSVA

using MATLAB and our FPGA-based implementation.

The endmembers are marked in the same order as they

were extracted. As shown in Fig. 9, for the first 13

endmembers the FPGA design gets exactly the same

result as MATLAB does, and then, there are some dif-

ferences in the extracted endmembers. These differences

result from the accumulated calculation error in the

hardware implementation. This is because the original

hyperspectral image data are stored in double float data

type, with 64 bits to represent each value. However, as

shown in Fig. 2, the image data are stored using 16 bits

in our data structure, which means that it is unavoidable

that a part of the fractions may be cut off. Besides, all

the intermediate variables face the same circumstance.

These differences are very small and can be negligible in

many circumstances, but after a number of iterations

they become more and more relevant, to the extent that

this influences the final result and we obtain a different

set of endmembers. As mentioned in Sect. 3, the adopted

data structure has been designed with the ultimate goal

of optimizing speed and resource utilization. If we

increase the number of bits used to represent the values

during the processing, the calculation error can be con-

strained to small values (at the cost of using more

computing resources in the FPGA). However, we have

experimentally found that the endmembers obtained

using the obtained structure are equally relevant, as

indicated in our assessment below.

The SA and RMSE scores obtained for the AVIRIS

Cuprite image are shown in Table 2. The number of

endmembers extracted is much larger than the number of

USGS reference signatures, so we choose the smallest

SA for each mineral as the final score. The best score for

each metric is bolded in the table. As shown in Table 2,

N-FINDR, MSVA, and RT-MSVA can obtain much

lower RMSEs than SGA, and among them RT-MSVA

results in the lowest RMSE score. On the other hand,

RT-MSVA performs well in terms of SA, obtaining, for

instance, the best matching score for the buddingtonite,

calcite and kaolinite minerals. N-FINDR exhibits good

accuracy because it traverses all the pixel combinations,

but this takes a very long time. MSVA uses a simplex

growing method and exhibits higher computational effi-

ciency than N-FINDR. In general, MSVA outperforms

SGA and N-FINDR if we take both accuracy and com-

putational efficiency into consideration. RT-MSVA is

the FPGA-implemented version of MSVA. As mentioned

before, there are differences in the obtained endmembers

resulting from accumulated computing errors due to the

adopted data structure. But the errors are far from fatal

as the obtained scores are not far from the optimal ones.

For instance, in our experiment with AVIRIS Cuprite

data, the FPGA-based implementation of RT-MSVA gets

a RMSE that is very close to the one reported for MSVA

Table 1 Average spectral angle scores (in degrees) between the

endmembers extracted by several algorithms and the USGS reference

spectral signatures for the synthetic scenes. The RMSE obtained in

the reconstruction using the extracted endmembers is also reported

Algorithms Spectral angle (degrees) RMSE

N-FINDR 0.362 4.11 3 1024

SGA 0.459 6.34 9 10-4

MSVA 0.357 4.63 9 10-4

RT-MSVA 0.357 4.63 9 10-4
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and even gets better performance in terms of SA scores.

In conclusion, although our hardware implementation of

RT-MSVA has some accumulated errors, it still keeps

better balance between accuracy and computational

performance than N-FINDR and SGA.

4.3 Computational performance evaluation

In this subsection, we will analyze the computational per-

formance of the proposed FPGA-based implementation.

The resource utilization is summarized in Table 3. Because

we use block RAMs to store the data, the cost of slice

registers and slice LUTs is not very high. The main limi-

tation of our implementation is the number of DSPs (of

type DSP48E1) that are used to implement the computing

units such as multipliers and dividers. It should be noted

that the resource utilization is not constant when the data

set to be processed changes. In other words, for different

numbers of spectral bands, different numbers of operators

should be arranged.

Table 4 shows the computing times reported for RT-

MSVA and RT-FSGA when processing the AVIRIS

Cuprite data by our FPGA-based implementation and the

equivalent software version in MATLAB. The

Fig. 9 Endmembers extracted by the proposed RT-MSVA algorithm from the AVIRIS Cuprite scene. a MATLAB version. b FPGA version

Table 2 Average spectral angle scores (in degrees) between the endmembers extracted by several algorithms and the USGS reference spectral

signatures for the real AVIRIS Cuprite scene. The RMSE obtained in the reconstruction using the extracted endmembers is also reported

Algorithms Alunite Buddingtonite Calcite Kaolinite Muscovite RMSE

N-FINDR 2.106 5.781 4.390 2.343 2.843 0.0049

SGA 2.501 6.328 5.294 2.634 2.298 0.0065

MSVA 2.917 5.610 4.037 1.766 2.687 0.0047

RT-MSVA 4.113 5.610 4.037 1.766 2.687 0.0046

Table 3 Summary of resource

utilization of the FPGA

implementation of RT-MSVA

for the AVIRIS Cuprite data

Logic utilization Used Available Utilization (%)

Number of slice registers 37,140 407,600 9

Number of slice LUTs 69,286 203,800 34

Number of fully used LUT-FF pairs 17,864 76,140 23

Number of bonded IOBs 33 500 6

Number of block RAM/FIFO 148 445 33

Number of BUFG/BUFGCTRLs 1 32 3

Number of DSP48E1s 567 840 67

Maximum frequency 48.260 MHz
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experimental results of RT-FSGA implemented on an

FPGA are reproduced from [27]. For RT-MSVA,

MATLAB used 163.38 s to obtain the endmembers, and

our FPGA implementation used 0.4.06 9 107 clock peri-

ods. The clock frequency is 48.260 MHz, and the pro-

cessing time is just 0.84 s. Compared to 0.16 s of RT-

FSGA, the implementation of RT-MSVA is a bit slower.

However, as discussed before, RT-MSVA exhibits better

accuracy than RT-FSGA in terms of endmember extrac-

tion. Moreover, RT-MSVA does not need a dimensionality

reduction step, as opposed to RT-FSGA.

The newest generation of AVIRIS from National

Aeronautics and Space Administration (NASA) is charac-

terized by a sensor data acquisition rate of 17 MB/s. The

data size of the real hyperspectral image used in this paper

is about 55 MB, so the new generation AVIRIS sensor

requires at least 3.23 s to acquire an image with the same

size. Our FPGA implementation can complete the end-

member extraction in 0.84 s, so it strictly meets the real-

time requirements of sensors such as AVIRIS new gener-

ation. In addition, it should also be noted that our FPGA

implementation may still be further optimized in future

developments.

5 Conclusions and future lines

Hyperspectral imaging applications often require fast pro-

cessing techniques able to perform in (near) real time.

However, high spectral resolution leads to high computa-

tional complexity. As a result, there is an urgent need to

develop real or near real-time implementations for hyper-

spectral image processing. In this paper, we have presented

an FPGA-based implementation of a maximum simplex

volume algorithm (RT-MSVA) for endmember extraction

from hyperspectral images. This method does not require a

previous dimensionality reduction, and it can take full

advantage of the information contained in the original data

cube. The simplex growing method and a fast matrix

determinant computation greatly help to decrease the

computational complexity. Our experimental results

indicate that the proposed hardware implementation of RT-

MSVA exhibits better accuracy than other FPGA imple-

mentations such as RT-FSGA (based on simplex growing).

Our proposed system can fully achieve real-time process-

ing capabilities, which is remarkable in FPGA systems as

this paves the way for spaceborne hyperspectral data pro-

cessing with reconfigurability, low power consumption,

and radiation tolerance. Additional experiments with other

hyperspectral data sets will be conducted in future devel-

opments to further discuss the influence of a varying

number of spectral bands in the input data. We will also

further explore the balance between accuracy, speed, and

computing resources for the proposed implementations.

Also, we consider proving the applicable ability of FPGA-

based real-time maximum simplex volume algorithm by

using images of larger size, i.e., of size that is closer or

equal to the real hyperspectral images. Moreover, we want

to integrate abundance estimation module when we carry

on this research. Another future research line will be to

reduce the number of pixels to be calculated by prepro-

cessing [40], which may also lead to a substantial decrease

in processing time.
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7. Plaza, A., Martı́nez, P., Pérez, R., Plaza, J.: A quantitative and

comparative analysis of endmember extraction algorithms from

hyperspectral data. IEEE Trans. Geosci. Remote Sens. 42(3),
650–663 (2004)

8. Boardman, J.W.: Geometric mixture analysis of imaging spec-

trometry data. In: Proceedings of International Geoscience

Remote Sensing Symposium, Pasadena, CA, vol. 4,

pp. 2369–2371. (1994)

9. Nascimento, J.M.P., Dias, J.M.: Vertex component analysis: a

fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci.

Remote Sens. 43(4), 898–910 (2005)

Table 4 Processing time (seconds) measured for the proposed RT-

MSVA with the AVIRIS Cuprite image (MATLAB and FPGA

implementation)

MATLAB (s) FPGA

Processing time (s) Clock periods

RT-FSGA 46.58 0.16 3.11 9 107

RT-MSVA 163.38 0.84 4.06 9 107

1692 J Real-Time Image Proc (2019) 16:1681–1694

123



10. Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P.:

Automatic endmember extraction from hyperspectral data for

mineral exploration. In: Proceedings of 4th International Air-

borne Remote Sensing Conference and Exhibition/21 st Canadian

Symposium Remote Sensing, Ottawa, ON, Canada, June,

pp. 21–24. (1999)

11. Winter, M.E.: N-FINDR: an algorithm for fast autonomous

spectral endmember determination in hyperspectral data. In:

Proceedings of SPIE, vol. 3753, pp. 266–275. (1999)

12. Chang, C.-I., Wu, C., Liu, W., Ouyang, Y.C.: A growing method

for simplex-based endmember extraction algorithms. IEEE Trans.

Geosci. Remote Sens. 44(10), 2804–2819 (2006)

13. Geng, X.R.: Target detection and classification for hyperspectral

imagery. Ph.D. dissertation, Institute of Remote Sensing Appli-

cations Chinese Academy of Science, Beijing, China (2005)

14. Geng, X.R., Zhao, Y.C., Wang, F.X., Gong, P.: A new formula

for a simplex and its application to endmember extraction for

hyperspectral image analysis. Int. J. Remote Sens. 31(4),
1027–1035 (2010)

15. Qu, H., Huang, B., Zhang, J., Zhang, Y.: An improved maximum

simplex volume algorithm to unmixing hyperspectral data. In:

Proceedings of SPIE, vol. 8895, pp. 889507-1–889507-7. (2013)

16. Zhang, B.: Intelligent remote sensing satellite system. J. Remote

Sens. 15(3), 415–422 (2011)

17. Lee, C.A., Gasster, S.D., Plaza, A., Chang, C.-I., Huang, B.:

Recent developments in high performance computing for remote

sensing: a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote

Sens. 4(3), 508–527 (2011)

18. Plaza, A., Plaza, J., Paz, A., Sánchez, S.: Parallel hyperspectral

image and signal processing. IEEE Signal Process. Mag. 28,
119–126 (2011)

19. Sánchez, S., Paz, A., Martin, G., Plaza, A.: Parallel unmixing of

remotely sensed hyperspectral images on commodity graphics

processing units. Concur. Comput. Pract. Exp. 23(13), 1538–1557
(2011)

20. Lysaght, P., Blodget, B., Mason, J., Young, J., Bridgford, B.:

Enhanced architectures, design methodologies and CAD tools for

dynamic reconfiguration of Xilinx FPGAs. In: Proceedings of

International Conference on Field Programmable Logic Appli-

cations, pp. 1–6. (2006)

21. Compton, K., Hauck, S.: Reconfigurable computing: a survey of

systems and software. ACM Comput. Surv. 34, 171–210 (2002)

22. Tessier, R., Burleson, W.: Reconfigurable computing for digital

signal processing: a survey. J. VLSI Signal Process. Syst. 28(1),
7–27 (2001)

23. Sánchez, S., Rui, R., Sousa, L., et al.: Real-time implementation

of remotely sensed hyperspectral image unmixing on GPUs.

J. Real-Time Image Proc. 10(3), 469–483 (2015)

24. Sánchez, S., Plaza, A.: Fast determination of the number of

endmembers for real-time hyperspectral unmixing on GPUs.

J. Real-Time Image Proc. 9(3), 397–405 (2012)

25. Hauck, S.: The roles of FPGAs in reprogrammable systems. Proc.

IEEE 86(4), 615–639 (1998)

26. Plaza, A., Du, Q., Chang, Y.-L., King, R.L.: High performance

computing for hyperspectral remote sensing. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)

27. Gonzalez, C., Lopez, S., Mozos, D., et al.: A novel FPGA-based

architecture for the estimation of the virtual dimensionality in

remotely sensed hyperspectral images. J. Real-Time Image Proc.

43(5), 1–12 (2015)
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