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Abstract—Hyperspectral (HS) pansharpening intends to synthe-
size a HS image with a registered panchromatic image, to gener-
ate an enhanced image with simultaneous high spectral resolution
and high spatial resolution. However, the spectral range gap be-
tween the two kinds of images and the need to resolve details for
many continuous narrow bands make the technique prone to spec-
tral distortion and spatial blurring. To mitigate the problems, we
propose a new HS pansharpening framework via spectrally pre-
dictive convolutional neural networks (HyperPNN). In our pro-
posed HyperPNN, spectrally predictive structure is introduced to
strengthen the spectral prediction capability of a pansharpening
network. Following the concept of the proposed HyperPNN, two
specific pansharpening convolutional neural network (CNN) mod-
els, i.e., HyperPNN1 and HyperPNN2, are designed. Experimental
results from three datasets suggest the excellent performance of
our CNN-based HS pansharpening methods.

Index Terms—Convolutional neural networks (CNN), hyper-
spectral (HS) image, pansharpening, spectral prediction.

I. INTRODUCTION

W ITH the development of imaging spectroscopy tech-
nique, hyperspectral (HS) image processing has become

a flourishing topic in the fields of remote sensing and informa-
tion acquisition with a wide range of applications [1]–[3]. How-
ever, due to inherent limitations of imaging systems, HS images,
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characterized bymany continuous bandswith high spectral reso-
lution, usually suffer from low spatial resolution. This weakness
leads to relatively poor performance in some practical applica-
tions [3]–[5]. Therefore, full-resolution HS images with both
high spatial and spectral resolution are desired. One way to ob-
tain such kind of ideal images is to fuse high spectral resolution
HS images with high spatial resolution panchromatic (PAN) im-
ages, which is usually called HS pansharpening [3].
Following traditional pansharpening approaches which are

mainly used for combiningmultispectral (MS) imageswith PAN
images, some kinds of strategies therein could be possibly con-
sidered for the HS pansharpening task [6]–[8]. The first one
is component substitution where the spatial component of an
HS image is replaced with that of the connected PAN image,
usually utilizing a mathematical image detail formulation
involving, such as principal component analysis [9], [10],
intensity-hue-saturation method [11], [12] and guided filtering
[13]. The second strategy is multiresolution analysis, which ex-
tracts and injects spatial details in a multiresolution manner,
some typical examples of which are smoothing filter-based in-
tensity modulation (SFIM)[14], theMTF-generalized Laplacian
pyramid (MTF-GLP) method [15] and regression-based high-
pass modulation[16]. Another one is matrix factorization, which
formulates the observeddatawith signal subspace representation
and then leverages optimization tool to factorize related matri-
ces [17]. The fourth one is Bayesian inference, which depends
on Bayesian statistics to infer probabilistic parameters used for
pansharpening models [18]–[20].
Over recent years, convolutional neural networks (CNNs)

start prevailing in improving image spatial resolution.Dong et al.
proposed a super-resolution CNN (SRCNN) which is a three-
layer CNN to learn the mapping from the input low-resolution
image to the output high-resolution image [21]. Kim et al. also
designed a CNN structure for super-resolution, where the resid-
ual component is learned [22]. Such two CNNs are in fact rep-
resentatives of two kinds of basic CNN structures, respectively.
One structure is flat network where the input signals mainly pass
through an only path of convolutional layers; the other structure
could be called component network which comprises of par-
allel pathways, where individual signal components pass the
pathways and then add up at the end of the parallel structure.
A component network is usually equipped with skip connec-
tions. After the works of Dong et al. and Kim et al., CNNs
lent themselves to multispectral pansharpening task. Masi et al.
presented a flat pansharpening CNN (PNN) [23], where the
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pre-interpolated low-resolution MS image is stacked with the
associated PAN image to go through a CNN process. Wei et al.
adopted a CNN method with residual component learning for
pansharpening [24], and also a component pansharpening net-
work involving multiscale kernels trick [25]. Later, Giuseppe
et al. bought target-adaptive modality into CNN design to fur-
ther improve the network performance[26].
HS pansharpening is faced with challenges significantly dif-

ferent fromother image resolution enhancement tasks, including
traditional multispectral pansharpening. The challenges mainly
lie on two aspects. First, the spectral range of an HS image is
usually much wider than that of a registered PAN image, which
makes the HS bands out of the PAN spectral range difficult to
sharpen. Second, the HS image contains many continuous bands
with high spectral resolution, which obviously means that re-
solving details from the PAN image for all the bands at one time
is a hard task. Therefore, HS pansharpening requires a strong
spectral-prediction ability in the adopted method. Due to the
fact that existingCNN-basedmultispectral pansharpeningmeth-
ods do not specially consider the spectral prediction problem,
there are obvious limitations when we straightforwardly apply
these methods to HS pansharping. Motivated by this point, in
this paper we present a new framework of HS pansharpening
via spectrally predictive CNN (HyperPNN), which exploits the
spectral convolution structure to strengthen spectral prediction.
Following that, two specific realizations of HyperPNN, i.e., Hy-
perPNN1, which is flat type, and HyperPNN2, which is compo-
nent type, are developed in this paper. Each of the two proposed
HyperPNNmethods ismainly composed of a spectral prediction
sub-network and a spectral–spatial inference sub-network, being
able to achieve remarkable HS pansharpening performance.
The rest of this paper is organized as follows. Brief back-

ground knowledge about CNN is provided in Section II. De-
tailed descriptions of the proposed HyperPNN methods are
presented in Section III. The results of our experiments are
shown and analyzed in Section IV. Finally, the conclusion is
drawn in Section V.

II. CONVOLUTIONAL NEURAL NETWORKS

Normally, CNNs are designed for processing data residing on
regular lattices. The data are convoluted on successive multiple
layers with slide windows or kernels. During the process, the
kernels are updated to minimize the discrepancy between the
expected and the current outputs where forward-propagate and
back-propagate processes are involved.
Consider theHSpansharpening case. ThePAN imagewith the

size L×W is denoted asP ∈ RL×W , while the low-resolution
HS image with l × w pixels andB spectral bands is indicated as
˜H ∈ Rl×w×B . By fusingP and ˜H, we expect a high-resolution
HS image ̂H ∈ RL×W×B . Thus, CNN-based HS pansharpening
can be formulated as minimizing the following loss function:

�(θθθ) = ‖M(P, ˜H;θθθ)− ̂H‖2F (1)

whereM(·) represents the mapping from the input to the output
of a CNN, θθθ denotes parameters to be optimized, and ‖ · ‖F

refers to the Frobenius norm. The CNN can learn the involved
kernels from data, offering the possibility for HS pansharpening.

III. PROPOSED METHODS

As aforementioned, HS pansharpening is faced with two spe-
cial challenges. One is the spectral range gap between the HS
image and the PAN image; the other is resolving details for
many continuous and high spectral resolution bands simultane-
ously. Thus, approaches with high-spectra-predictive capability
are desirable.
Inspired by such an analysis, we here propose the concept of

HS pansharpening via spectrally predictive CNNs, namely Hy-
perPNN, to accommodate HS pansharpening challenges, where
spectrally predictive layers are added to strengthen the spec-
tral prediction ability of a network. In a practical HyperPNN
network, it is expected to consist of two sub-networks, i.e., a
spectral prediction sub-network and a spatial–spectral inference
sub-network. The spectral prediction sub-network comprises
spectral convolutional layers with convolution operations only
along spectral dimension, being mainly for the purpose of spec-
tral prediction, while the spatial–spectral inference sub-network
contains normal spatial–spectral convolutional layers, mainly
aiming at exploiting spectral and spatial contextual information,
simultaneously.
In the following, we present two new specific structures based

on the HyperPNN concept, i.e., HyperPNN1 and HyperPNN2.

A. HyperPNN1

Our HyperPNN1, shown in Fig. 1, is a flat CNN, with the
purpose of building a spectrally predictive CNN suitable for HS
pansharpening. As shown in Fig. 1, HyperPNN1 contains seven
layers, including two parts—the spectral prediction sub-network
with four layers and the spatial–spectral inference sub-network
with three layers, respectively. Notice that, in Fig. 1, the spatial
sizes of adopted convolutional kernels are specified for each
layer.
In the beginning of the network, the pre-interpolated HS im-

age is connected to two serialized convolutional layers, where
the image is the input of the first convolutional layer whose out-
put is then fed to the second convolutional layer.With the help of
such two convolutional layers, the pre-interpolated HS image is
transformed to a feature cube with lower dimension, where the
spectral prediction is performed. Then, that feature cube is con-
catenated with the PAN image along the spectral dimension on
the third layer, forming the input of the next convolutional layer
which is serialized with another two convolutional layers to es-
tablish a spectral–spatial inference sub-network. In the end, the
output of the spectral–spatial inference module is connected to
another two serialized spectrally predictive convolutional layers,
strengthening the spectral prediction to yield the pansharpened
HS image.
The spectral prediction sub-network of our HyperPNN1 is

constructed by the first two layers and the last two ones, where
convolutions with kernels in the spatial size of 1× 1 are applied.
That is,weperformoperation per pixel along the only spectral di-
mension, aiming at yielding spectral representative features and
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Fig. 1. Graphical illustration of the proposed HyperPNN1. c© denotes concatenation operation along spectral dimension. Notice that the sizes of adopted
convolutional kernels are specified in each layer.

Fig. 2. Graphical illustration of the proposed HyperPNN2.

hence strengthening the spectral prediction and learning. Mean-
while, the lower dimension feature cube means the decrease of
the number of parameters fed into the connected spatial–spectral
inference network, thus reducing the risk of training instability
and overfitting. In the final part of the whole network, there
are two additional spectral layers to further dispose information
along spectral dimension. Through such a design of the spectral
prediction sub-network, sufficient spectral information useful
for pansharpening will be collected during the procedure of suc-
cessive forward- and back-propagation, thus achieving strong
spectral predictive ability for the images to be pansharpened.
On the other hand, the spatial–spectral inference sub-network

of HyperPNN1 is constituted by three spatial–spectral convolu-
tional layers. The input of its first layer is the feature cube made
by concatenating the PAN image and the spectrally convolved
HS image. In the sub-network, kernels with certain spatial cov-
ering are used, aiming at introducing spatial contextual informa-
tion into the spectral–spatial features. Specifically, we exemplify
here 3× 3 spatial covering.
Let θθθ = (W,b), where W and b represent the kernels and

biases, respectively. When learning with HyperPNN1, both
forward- and back-propagation processes are included. After
each forward-propagation, the network output will be compared
with the expected one, seeing the loss function �(θθθ) in (1). If the
loss �(θθθ) exceeds the allow range, network parameters θθθ will,
in a subsequent backward-propagation process, be updated by

a stochastic gradient descend (SGD) process with a learning
rate of η. For the (t+ 1)th iteration, the update can be briefly
formulated in the following:

θθθt+1 = θθθt − η · ∂�
t(θθθ)

∂θθθt
(2)

where

∂�t(θθθ)

∂θθθt
=

{

∂�t(θθθ)

∂Wt
,
∂�t(θθθ)

∂bt

}

. (3)

B. HyperPNN2

Nowwe present another HS pansharpening CNN, i.e., Hyper-
PNN2. As demonstrated in, similar to HyperPNN1, the overall
structure of our HyperPNN2 also consists of a spectrally predic-
tive sub-network and a spectral–spatial inference sub-network,
totally being with seven layers. Same as HyperPNN1, Hyper-
PNN2 has four layers in the spectral prediction sub-networks
and three layers in the spectral–spatial inference sub-network.
However, different from HyperPNN1, HyperPNN2 has a

skip connection over the convolutional layers of the spatial–
spectral inference sub-network. Therein, the skip connection
plays mainly two roles. On the one hand, it makes the low level
features extracted from low resolution HS image to be the base-
line of learning in the convolutional pathway of the spatial–
spectral inference sub-network, hence reducing its optimization
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searching scope. Considering the output of Conv6O6, it can be
represented as

O6 = ϕ(W6 ∗ (O5 +O2) + b6) (4)

where O2, O5, and O6 represent the output of Conv2, Conv5,
and Conv6, respectively, W6 and b6 are weights and biases
of Conv6, while ϕ(·) is the activation function and ∗ denotes
convolution operation. Equation (4) indicates thatO6 is based on
O2 so that the low level featuresO2 directly works onO6. This
frees the convolutional pathway in the spatial–spectral inference
network from learning repeatedly the feature component shared
with the low level layer. On the other hand, gradient vanishing
[27]–[29] tends to bemitigated under HyperPNN2, thanks to the
skip connection. Consider kernel Conv2, its associated gradient
is of the following form:

∂�(θθθ)

∂W2

=
∂�(θθθ)

∂O2

∂O2

∂W2

=
∂�(θθθ)

∂O7

∂O7

∂O6

(∂O6

∂O5

∂O5

∂O4

∂O4

∂O3

∂O3

∂O2
+

∂O6

∂O2

) ∂O2

∂W2

=
∂�(θθθ)

∂O7
W7ϕ

′(O6)
(

W6

3
∏

i=1

W6−iϕ
′(O5−i) +W6

) ∂O2

∂W2

=
∂�(θθθ)

∂O7
W7ϕ

′(O6)W6

(
3
∏

i=1

W6−iϕ
′(O5−i) + 1

) ∂O2

∂W2

(5)

where ϕ′(·) represents the derivative of the activation func-
tion. Equation (5) is used to update Conv2 during the back-
propagation process with SGD. It should be noted that the term
(
∏3

i=1 W6−iϕ
′(O5−i) + 1) in (5) is attributed to the existence

of the skip connection. Without the skip connection, (5) will be
degenerated to

∂�(θθθ)

∂W2

=
∂�(θθθ)

∂O2

∂O2

∂W2

=
∂�(θθθ)

∂O7

∂O7

∂O6

∂O6

∂O5

∂O5

∂O4

∂O4

∂O3

∂O3

∂O2

∂O2

∂W2

=
∂�(θθθ)

∂O7
W7ϕ

′(O6)W6

(

3
∏

i=1

W6−iϕ
′(O5−i)

)

∂O2

∂W2

(6)

which is exactly the case in the HyperPNN1, and the multi-
ple multiplication (

∏3
i=1 W6−iϕ

′(O5−i)) here implies that the
gradient stack is prone to vanishing [27]–[29]. Thus, in compar-
ison with the gradient of the HyperCNN2 in (6), the gradient of
HyperCNN1 modeled in (5) tends to be lower. With the higher
gradient, HyperPNN2, basically a component type CNN, is ex-
pected to achieve faster convergence than HyperPNN1.
Finally, for illustrative purposes, Fig. 3 demonstrates the train-

ing losses of our proposed HyperPNN1 and HyperPNN2, re-
spectively, for an experiment over the Salinas dataset. Detailed

Fig. 3. Training losses of our HyperPNN1 and HyperPNN2 with the Salinas
dataset.

Fig. 4. Graphical illustration of HyperPNN implementation in a real scenario.

description of this dataset will be introduced in the following
experimental section. From Fig. 3, we can observe that Hyper-
PNN2 has a smaller loss and converges fast, in comparison with
the HyperPNN1, which is consistent with our expectation based
on aforementioned analysis.

C. Real Scenario Implementation

In a real scenario, the implementation of ourHyperPNNmeth-
ods can be attributed to two major phases. The first stage is
the low-resolution training phase, where the observed HS and
PAN images are degraded to be low-resolution ones. Then, a
pansharpening CNN model is trained, which involves the low-
resolution HS and PAN images as its input and the original
observed HS image as the reference. The second stage is the
full-resolution pansharpening phase, where the pansharpening
CNN model trained in the first phase is used to fuse the original
observed HS and PAN images to yield the final full-resolution
pansharpened HS image. Fig. 4 graphically illustrates the im-
plementation procedure for our HyperPNN methods in the real
scenario. The key to the feasibility of the implementation is
that there exists a scale invariance for the pansharpening CNN
model, which means that the pansharpening CNN learned in
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the low-resolution level can be transferred to the full-resolution
pansharpening.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates the performance of our proposed HS
pansharpeningmethods,where three real-world remotely sensed
image datasets are concerned, i.e., Washington DC Mall, Mof-
fett Field, and Salina Scene. The Washington DC Mall dataset
is acquired by the HS digital imagery collection experiment
sensor which collects spectral signal with wavelength from 0.4
to 2.4 μm in 210 bands, while the Moffett Field and Salina
Scene dataset are both obtained by the airborne visible/infrared
imaging spectrometer sensor whose images cover spectra rang-
ing from 0.4 to 2.5 μm with 224 bands. In the experiments, we
remove noisy bands, with 191 bands for Washington DC Mall,
176 bands for Moffett Field, and 204 bands for Salina Scene
remaining, respectively. Based on the Wald’s protocol [30],
the original HS image serves as the reference while the low-
resolution one is degraded from the former by Gaussian blurring
and downsampling. Moreover, the PAN image is simulated by
averaging the visible spectral bands of the reference.

A. Experimental Setup

As aforementioned, our proposed model totally contains
seven layers. Each of them includes 64 filters except for the top
layer withB filters. The filter size setting is shown in Figs. 1 and
2 for HyperPNN1 and HyperPNN2, respectively. The adopted
activation function is the rectified linear unit [31]. Specifically,
for both methods, the kernel sizes for the spectral prediction
sub-network and the spectral–spatial inference sub-network are
the same. Furthermore, training samples are divided into 11 by
11 patches with the stride of 5 and 64 patches are regarded as a
mini-batch for SGD. The training process is stopped at 5× 105

iterations. Due to the fact that we empirically observe that with
a number of 5× 105 iterations, both HyperPNN1 and Hyper-
PNN2 tend to converge, as shown in Fig. 3. The learning rate η
in (2) is initially set to 0.0001 and it adaptively updates based
on Adam[32]. We employed Caffe [33] to train our CNNs on
a PC with a GPU (Nvidia GTX 1050Ti 4GB with CUDA 8.1
and CUDNN V5) and test them on MATLAB R2015a via CPU
mode (computer with Intel I7 and 16 GB RAM ) under the deep
learning framework of Matconvnet [34]. The training process
for each model cost roughly 6 h.
For the purposes of comparison, five state-of-the-art pan-

sharpening methods are considered in our experiments, includ-
ing SFIM[14], CNMF[17], Bayesian sparse [19], PNN[23], and
DRPNN [24]. To objectively evaluate the performance of dif-
ferent HS pansharpening methods, four widely used quantita-
tive pansharpening metrics are utilized, i.e., cross correlation
(CC), spectral angle mapper (SAM), root-mean-squared error
(RMSE), and erreur relative global adimensionnelle de synthese
(ERGAS) [3]. Additionally, running time is also included in
quantitative evalupation. CC, as a spatial index, characterizes
the geometric distortion by the average of CCs for all bands.
SAM is a spectral index which measures the spectral shape
preservation by calculating the angle deviations for all pixels.

RMSE and ERGAS both belong to global indexes. The former
one measure the L2 norm between the pansharpened image and
the reference image, while the latter one is computed with the
summation of RMSE values. The value of CC lies on the interval
[0, 1]. The closer to 1 the index is, the higher the spatial qual-
ity of the pansharpened image is in. Lower SAM means higher
spectral pansharpening quality. As for RMSE and ERGAS, they
are expected to be lower, implying better pansharpening re-
sults. Besides quantitative evaluation, visual inspection is also
conducted.

B. Experiment 1—Washington DC Mall Dataset

This dataset covers an urban area in Washington DC Mall.
Fig. 5(a) exhibits the ground-truth HS image. The size of the
degraded HS image is 256× 60 and that of the PAN image is
1280× 300. We choose a sub-scene with 256× 128 pixels for
test.
First, quantitative comparison is demonstrated inTable I.With

the spectral and spatial pansharpening metrics being involved,
i.e., CC, SAM, RMSE, and ERGAS, our HyperPNN2 yields the
best performances under all cases while HyperPNN1 plays the
role of the closest competitor except under CC. More specifi-
cally, CNMF has a little worse CC than other methods, whereas
PNN and CNMF yield significantly inferior performances to
others, consistently under SAM, RMSE, and ERGAS. Mean-
while, HyperPNN2 and HyperPNN1 are computationally effi-
cient, ranking the second and the third places in terms of running
time, respectively. The fact thatHyperPNN2 runs faster thanHy-
perPNN1 confirms the advantages of the component type CNN
discussed in Section III-B. In a nutshsell, our proposed pan-
sharpening methods achieve excellent performance here when
evaluating quantitatively.
In addition to numeric metrics above for qualitative assess-

ment, careful visual inspection is also needed, especially to iden-
tify artifacts and distortions that the quantitative analysis may
fail to reveal. Fig. 5(b)–(h) show the pansharpened HS images
by variousmethods, where two local square areas are enlarged in
order to show the visual differences more clearly. By inspection
on these figures, visual qualities can be identified. Our Hyper-
PNN methods are the most similar to the ground truth, both
in spatial detail and spectral fidelity. SFIM does well in spec-
tral preservation but poor in spatial restoration, a little incon-
sistently with quantitative quality assessment. CNMF presents
a significant spectral distortion, such as the road shown in the
second enlarged box. Bayesian sparse incurs some artifacts, see
the stripe ripple on the greens above the building. PNN provides
image of low quality, with intense blurring, and obvious spec-
tral distortion. DRPNN is also characterized by a little spectral
distortion, such as the blue spots near the building in the first en-
larged subimage and the spots on the roof of the square building
in the second subimage.

C. Experiment 2—Moffett Field Dataset

This dataset covers a mixed urban/rural area in Moffett Field,
California. Fig. 6(a) exhibits the ground-truth HS image. The
size of the degraded HS image is 79× 37with 100 m resolution



HE et al.: HyperPNN: HYPERSPECTRAL PANSHARPENING VIA SPECTRALLY PREDICTIVE CONVOLUTIONAL NEURAL NETWORKS 3097

Fig. 5. HS pansharpening results for Washington DC Mall dataset: (a) Ground-truth; (b) SFIM; (c) CNMF; (d) Bayesian sparse; (e) PNN; (f) DRPNN;
(g) HyperPNN1; (h) HyperPNN2.

Fig. 6. HS pansharpening results for Moffett Field dataset: (a) Ground-truth; (b) SFIM; (c) CNMF; (d) Bayesian sparse; (e) PNN; (f) DRPNN; (g) HyperPNN1;
(h) HyperPNN2.

TABLE I
QUALITY METRICS OF DIFFERENT HS PANSHARPENING

METHODS ON WASHINGTON DC MALL DATASET

and that of the PAN image is 395× 185 with 20 m resolution.
We choose a sub-scene with 256× 128 pixels for test.

Table II lists the results of quantitative assessment on theMof-
fett Field. The superiority of our HyperPNN methods to other
compared methods is significant under all the four pansharpen-
ing metrics. More specifically, HyperPNN1 takes the first place
under CC, SAM, RMSE, and ERGAS while HyperPNN2 is the
closest follower, where both of them gain overwhelming advan-
tages especially under the latter three metrics. Moreover, both
HyperPNN1 and HyperPNN2 can achieve high computation ef-
ficacy in terms of running time.
For visual inspection, Fig. 6(b)–(h) show the HS pansharpen-

ing images yielded by different methods. Similar to what was
demonstrated on the previous dataset, our HyperPNN methods
exhibit an excellent quality on Moffett Field, with comparable
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Fig. 7. HS pansharpening results for Salinas Scene dataset: (a) Ground-truth; (b) SFIM; (c) CNMF; (d) Bayesian sparse; (e) PNN; (f) DRPNN; (g) HyperPNN1;
(h) HyperPNN2.

TABLE II
QUALITY METRICS OF DIFFERENT HS PANSHARPENING

METHODS ON MOFFETT FIELD DATASET

spatial resolution and unnoticeable spectral distortions, espe-
cially as being visible in the enlarged boxes. SFIM, CNMF, and
Bayesian sparse are characterized by some spectral distortions,
while in the result from SFIM, some areas are over sharpened,
with too much high-frequency details, for example in the bot-
tom of the first enlarged boxes. PNN is unsatisfactory for the
significant diffused blurring and a little lack of spectral fidelity.
DRPNNsuffers from severe spectral distortion, such as thewater
area shown in the lower part of the second enlarged subimage.

D. Experiment 3—Salinas Scene Dataset

This dataset covers a rural area in Salinas Valley, California.
Fig. 7(a) exhibits the ground-truth HS image. The size of the
degraded HS image is 102× 43 and that of the PAN image
is 510× 215. We choose a sub-scene with 256× 128 pixels
for test.
Table III reports the results of quantitative assessment on the

Salinas Scene. Similar to the quantitative results on the previous
dataset, HyperPNN2 still achieves the highest scores in terms of
all assessment metrics. HyperPNN1 also obtains very compet-
itive results, ranking in the second place. It is noteworthy that
our HyperPNN1 and HyperPNN2 run faster than all the other

TABLE III
QUALITY METRICS OF DIFFERENT HS PANSHARPENING

METHODS ON SALINAS SCENE DATASET

methods on this dataset, achieving very remarkable computation
efficacy.
Visual inspection helps explaining these behaviors.

Fig. 7(b)–(h) show the HS pansharpening results. Similar
to previous visual results, our HyperPNN methods still attain
the best performance in the Salinas Scene. SFIM, CNMF, and
Bayesian sparse inject so abundant details that they incur over
pansharpening, especially SFIM and Bayesian sparse, as seen
in their first subimages. PNN looks subtle diffused spatial
blurring and yield obvious spectral distortion, especially as
shown in the second enlarged subimage, explaining clearly its
poor performance of spectral preservation.
The above quantitative evaluations and visual inspections on

three datasets verify the excellent performances of our proposed
CNNs for HS pansharpening.

V. CONCLUSION

In this study, we have developed spectrally predictive CNN
methods for HS pansharpening. HS pansharpening is faced with
two major challenges: 1) the spectral range gap between the HS
image and the PAN image; and 2) resolving details for many
continuous narrow bands simultaneously. To deal with them,
we developed the concept of HyperPNN and then accordingly



HE et al.: HyperPNN: HYPERSPECTRAL PANSHARPENING VIA SPECTRALLY PREDICTIVE CONVOLUTIONAL NEURAL NETWORKS 3099

designed two specific networks, i.e., HyperPNN1 and Hyper-
PNN2. Due to the inclusion of spectral predictive sub-network
dedicated to learn along the spectral dimension, our networks
are well suitable for the HS pansharpening task. Experimental
results verify the remarkable performances of our HyperPNN
methods.
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