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Abstract—Pansharpening aims to fuse a multispectral (MS) im-
age with an associated panchromatic (PAN) image, producing a
composite image with the spectral resolution of the former and the
spatial resolution of the latter. Traditional pansharpening methods
can be ascribed to a unified detail injection context, which views the
injected MS details as the integration of PAN details and bandwise
injection gains. In this paper, we design a new detail injection based
convolutional neural network (DiCNN) framework for pansharp-
ening with the MS details being directly formulated in end-to-end
manners, where the first detail injection based CNN (DiCNN1)
mines MS details through the PAN image and the MS image, and
the second one (DiCNN2) utilizes only the PAN image. The main
advantage of the proposed DiCNNs is that they provide explicit
physical interpretations and can achieve fast convergence while
achieving high pansharpening quality. Furthermore, the effective-
ness of the proposed approaches is also analyzed from a relatively
theoretical point of view. Our methods are evaluated via experi-
ments on real MS image datasets, achieving excellent performance
when compared to other state-of-the-art methods.

Index Terms—Convolutional neural networks (CNNs), detail
injection, pansharpening.
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I. INTRODUCTION

DUE to the physical characteristics of multispectral (MS)
image sensors, they generally acquire MS images with

limited spatial resolution. However, high spatial resolution MS
images are required in many applications, such as classifica-
tion, target detection, scene interpretation, and spectral unmix-
ing [1], [2]. Therefore, pansharpening has been an active area of
research, drawing significant attention in the area of remotely
sensed image processing. The pansharpening task aims at fusing
a low spatial resolution MS image and a registered wide-band
panchromatic (PAN) image, utilizing the detail information con-
tained in the PAN image to sharpen the MS image, hence yield-
ing a high spatial resolution MS image [1]. The task can be
seen as a special reconstruction based on different types of data
with different characteristics. For simplicity, low spatial reso-
lution MS images are called LRMS images, and high spatial
resolution MS images are called HRMS images, hereinafter. A
HRMS image pansharpened from the LRMS image is called
pansharpened HRMS image hereinafter. Ideally, as a full reso-
lution image, the pansharpened HRMS image should have the
same spectral resolution as the original LRMS image and the
same spatial resolution as the corresponding PAN image.
Over the past decades, a wide variety of pansharpen-

ing methods have been proposed in the literature [1]–[4].
Among such existingmethods, component substitution (CS) and
multi-resolution analysis (MRA) are two widely representative
categories [1]–[3]. CS approaches usually replace certain com-
ponents of the MS image with those from the PAN image in
a given domain, which include principal component analysis
based pansharpening [5]–[7], Brovey transform based pansharp-
ening [8], [9], and Gram–Schimidt (GS) transform based pan-
sharpening [10], [11], among others. In contrast, MRAmethods
exploit the spatial information via a multiresolution decompo-
sition of the images, which generally involves detail extraction
and detail integration inmultiple scales. Examples are pansharp-
enings based on decimatedwavelet transform [12], undecimated
wavelet transform [13], a tróus wavelet transform (ATWT)
[14]–[16], and Laplacian pyramid [17]–[19]. The aforemen-
tioned methods differ mainly in how spatial details are extracted
from the PAN image and how they are injected into the pre-
interpolated LRMS image. One major challenge for CS/MRA
approaches is to preserve spatial details resolved from the PAN
image as much as possible, while avoiding spectral distortion.
This refers to the spectral deviation from an ideal spectrum,
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especially when PAN and MS images are acquired in spectral
ranges that overlap only partially [1], [20]. Unfortunately, ex-
isting CS/MRA methods are often prone to significant spectral
distortion [3], even under some improvement of fusion strate-
gies such as histogram matching [21], weighted detail injection
[16], or some hybrid intermediate processes [22]. This is prob-
ably due to the fact that the details are not very effectively
learned and injected, although CS/MRA approaches indeed aim
to utilize the detail information.
Recently, convolutional neural networks (CNNs) start prevail-

ing in image enhancement tasks such as super-resolution [23],
[24] and pansharpening [20], [25]. Super-resolution is, to some
degree, a pansharpening-related task, as both super-resolution
and pansharpening aim to enhance image resolution. There are,
however, some differences among them since the former is usu-
ally a single input single output (SISO) process while the latter is
amultiple input single output (MISO) case. Dong et al. proposed
a super-resolution CNN (SRCNN), which is a three-layer CNN,
to learn the mapping from the input low-resolution image to the
output high-resolution image [23]. Kim et al. designed a deep
CNN structure for super-resolution, where the residual compo-
nent is learned [26]. Whether or not details are injected from
the PAN image to its associated LRMS image represents the
major difference between pansharpening and super-resolution
tasks. Considering this, Masi et al. presented a pansharpen-
ing CNN (PNN) following the basic thread of SRCNN [20],
where the pre-interpolated LRMS image is stacked with the
PAN image at the input layer, and then a CNN process is used to
learn the relationship between the input and the pansharpened
HRMS image. Although PNN exhibits good performance on
real remotely sensed data, difficulties arise from the long-time
training iterations and the problem that it misses the domain
specific pansharpening structure and roughly treats pansharp-
ening as a black-box learning procedure. Afterwards, Wei et al.
designed a CNN method for pansharpening [25]. The method
comprises the process of residual learning and the subsequent
dimension reduction, which is faced with the problems that the
learned residual has no explicit physical interpretation for pan-
sharpening and there is an additional computation load related
to dimension reduction. They also introduce strategies such as
multiscale kernels into the CNN-based pansharpening [27].
In this paper, a general detail injection formulation, namely,

detail injection based CNNs for pansharpening (DiPAN), is
summarized, which is able to accommodate CS/MRA pan-
sharpening methods. The proposed DiPAN can be used as a
domain-specific structure to guide the design of new pansharp-
ening methods. In the context of our DiPAN framework, two
detail injection based CNNs (DiCNNs) for MS detail learning
are introduced, where the main contributions of this paper can
be summarized as follows.
1) The first method, called DiCNN1, adopts a framework

in which the pathway of stacked convolutional layers
only learns the MS details from the combination of
the pre-interpolated LRMS image and the PAN image
in an end-to-end manner, resulting in good initializa-
tion. DiCNN1, following the basic idea in our previous
work [28], has clear interpretability in the detail injection

context, and can greatly reduce the uncertainty of learn-
ing, thus achieving high computational efficiency and pan-
sharpening quality. A detailed description of the method,
followed by a discussion and extensive experimental re-
sults, are provided in this paper. Furthermore, we present
a theoretical analysis and proof of the effectiveness of
DiCNN1. To the best of our knowledge, the effectiveness
of a parsharpening CNN has not been previously explored
from such a theoretical point of view.

2) The second method, called DiCNN2, is capable of trans-
fer learning when there are bad bands in test MS images.
DiCNN2 works under the assumption that ideal MS detail
is only relevant to the PAN image, and directly uses the
PAN image as the input of the convolutional layer path-
way, which makes it able to perform transfer learning in
addition to the regular pansharpening task. Since its input
is a one-dimensional (1-D) PAN image only (with a small
amount of CNN free parameters), DiCNN2 yields very
fast computation.

The remainder of the paper is organized as follows. Section II
introduces the detail injection framework. Section III summa-
rizes major existing CNN-based super-resolution and pansharp-
ening methods. Section IV introduces our detail injection based
CNN pansharpening methods and presents the corresponding
complexity analysis. Section V evaluates the proposed methods
via experiments with real MS datasets. Section VI concludes the
paper with some remarks and hints at plausible future research
lines.

II. DETAIL INJECTION FRAMEWORK

Let P ∈ RH×W denote an observed PAN image with size
H × W ; let ˜M ∈ RH×W ×Nb be a pre-interpolated LRMS,
which has been interpolated spatially to the scale of the PAN
image (with Nb being the number of bands); and let ̂M be the
pansharpened HRMS image.
Traditionally, CS/MRA methods are viewed as two major

groups of pansharpening methods [1]. CS category can be
generally formulated as

̂Mb = ˜Mb + gb · (P − Ic), b = 1, . . . , Nb (1)

where ̂Mb and ˜Mb are the bth bands of ̂M and ˜M, respectively,
gb represents the injection gain associated with ˜Mb , Nb is the
number of MS bands, and Ic is the intensity component of the
MS image, which is often a weighted sum Ic =

∑Nb

b=1 ωb
˜Mb .

To show the substitution process in CS methods, (1) can be
reformulated as

̂Mb = ˜Mb − Ic + gb · (P − Ic) + Ic

= (˜Mb − Ic) + gb ·
(

P − gb − 1
gb

Ic

)

(2)

which suggests that, in a CSmethod, the component Ic is substi-
tuted with the component gb · (P − gb −1

gb
Ic). On the other hand,

the general formulation of MRA methods is of the form [1]

̂Mb = ˜Mb + gb · (P − Pc), b = 1, . . . , Nb (3)
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Fig. 1. Schematic diagram of the DiPAN framework.

wherePc denotes the low-frequency component of the PAN im-
age, which is usually obtained in a MRA way. According to the
representations in (1) and (3), both CS and MRA methods are
normally based on two sequential phases: First, the extraction of
MS details from the PAN image, which usually comprises inter-
mediate processes, such as yielding PAN details and obtaining
band injection gains. Second, the injection of the MS details
into the LRMS image to produce the HRMS image. Therefore,
such two categories of pansharpening methods can be repre-
sented in a unified detail injection framework, namelyDiPAN, as
follows:

̂Mb = ˜Mb + gb · d

= ˜Mb + Db (4)

where d represents the PAN details, which are usually calcu-
lated by involving both the PAN image and the MS image with
a certain criterion, Db = gb · d denotes the MS details, which
should complement the pre-interpolated LRMS image ˜M, while
gb stands for the associated injection gain responsible for trans-
ferring the PAN details to the MS details. A schematic diagram
of DiPAN is given in Fig. 1, where it is indicated that the full-
resolution pansharpened HRMS image ̂M can be decomposed
into the MS details and the LRMS approximation.
As the formulation in (4) and the schematic diagram in Fig. 1

indicate, DiPAN has clear physical interpretability for the pan-
sharpening process, which can be used as a pansharpening
domain-specific structure to guide the design of new pansharp-
ening methods.

III. SUPER-RESOLUTION AND PANSHARPENING USING
CNN STRATEGY

Recently, CNNs were successfully applied in image super-
resolution and pansharpening. CNNs are usually treated as the
descendants of traditional artificial neural networks [29]–[31], in
which assumptions such as a limited receptive field (processing
input only in a neuron’s local neighborhood) and the spatial
invariant weight (so-called weight sharing) are normally jointly
employed.

The response of a convolutional layer in a CNN can be given
by

Yl = ϕ(Wl ∗ Xl + Bl) (5)

where ∗ denotes the convolution operation, Xl and Yl are the
input and output of the lth layer, respectively, Wl and Bl are
the weight and bias metrics, respectively, and ϕ(·) represents
the activation function. Due to its ability to mitigate gradient
vanishing and its computational simplicity, the rectified linear
unit (ReLU) [32] is commonly used in CNNs, whose input–
output relation is Yl = max(0,Xl) [23], [33]–[35].
Both image super-resolution and pansharpening intend to re-

cover high-resolution images from the observed low-resolution
data, with the major disparity being that one is a SISO process
and the other one is a MISO one. In image super-resolution,
usually the low spatial resolution image (as a single input) is
processed to output a high spatial resolution image, while pan-
sharpening utilizes the MS image with low spatial resolution
and the PAN image with low spectral resolution as two separate
data sources to recover the full resolution HRMS image. The
two kinds of image resolution enhancements mentioned above
are used as mathematical tools to minimize the loss function of
expected square error as

�(θθθ) = E‖ ̂H(X;θθθ) − Y‖2
F (6)

where ̂H is the predicted high-resolution image following a
parametric structure, Y is the ideal high-resolution image, θθθ
denotes the parameters used to infer the predicted image, andX
is the low-resolution input, which means a low spatial resolution
image for image super-resolution that represents both the low
spectral resolution PAN image and the associated LRMS image
for pansharpening.
Dong et al. designed a three-layer CNN for image super-

resolution able to directly learn the mapping between the low-
resolution image and the high-resolution image, which is called
super-resolution CNN (SRCNN) [23]. Therein patch extraction
and representation are used to improve computational efficiency
and feature locality in the training phase. The objective is to
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minimize the following patchwise mean square error:

�(θθθ) = E‖ ̂H(X;θθθ) − Y‖2
F

=
1

Np

Np
∑

i=1

‖ ̂H(i)(X(i) ;θθθ) − Y(i)‖2
F (7)

where i is the index of patches, Np denotes the number of
total patches, θθθ represents the free CNN parameters to be op-
timized under the CNN context, X(i) refers to the ith patch in
the low-resolution image, and ̂H(i) stands for the ith patch in
the predicted high-resolution image. As a counterpart for pan-
sharpening purposes, Masi et al. introduced a PNN [20], which
stacks the pre-interpolated LRMS image and the PAN image
together and then uses a CNN to mine the mapping between this
concatenation and a real HRMS image.
The loss function to be minimized is

�(θθθ) = E‖̂M(G;θθθ) − Y‖2
F

=
1

Np

Np
∑

i=1

‖̂M(i)(G(i) ;θθθ) − Y(i)‖2
F (8)

whereG = (˜M,P) in the sizeH × W × (Nb + 1) denotes the
concatenation of the pre-interpolated LRMS image ˜M and the
PAN image P along the band dimension. Here, the target Y
stands for the ideal HRMS for the pansharpening case. Consid-
ering that MS images are in 3-D data arrangement, ̂M and Y
are originally three-way or third-order tensors [36]. To accom-
modate a matrix representation, ̂M and Y in (8) are unfolded
as matrices, for example, along the first mode and being de-
noted as ̂M(1) and Y(1) [36]. But, for simplicity, ̂M and Y in
(8) represent their unfolding matrices ̂M(1) and Y(1) , respec-
tively. If not stated otherwise, the reminder of the paper follows
the same expression routine when involving three-way tensor
representations.
The deep residual network (ResNet) has reached excellent

performance in image classification [37]. Its success largely
stems from attaching an identity skip connection to fit a residual
mapping. Kim et al. extended ResNet and proposed a deep
network for super-resolution purposes, which intends to learn
the residual supplementary to the input low-resolution image
instead of the predicted high-resolution image itself [26]. The
loss function is defined as follows:

�(θθθ) = E‖̂R(X;θθθ) + X − Y‖2
F

=
1

Np

Np
∑

i=1

‖̂R(i)(X(i) ;θθθ) + X(i) − Y(i)‖2
F (9)

where R represents the residual that needs to be learnt. Later,
Wei et al. used a similar strategy for pansharpening, termed
deep residual pansharpening neural network (DRPNN) [25]. In
the DRPNN, the concatenation of the pre-interpolated LRMS
image and the PAN image pass through both stacked layers and a
shortcut connection to yield the residual and, then, an additional
convolutional layer is included for dimensionality reduction.

The connected objective is to minimize the following loss:

�(θθθ) = ‖ω(̂R(G;θθθ) + G) − Y‖2
F

=
1

Np

Np
∑

i=1

‖ω(̂R(i)(G(i) ;θθθ) + G(i)) − Y(i)‖2
F (10)

where ω(·) denotes a convolution operation for dimensional
matching.
In comparison with the CS/MRA approaches, CNNs provide

a new possibility to perform learning for pansharpening, where
the details are driven from the context. However, in compar-
ison with DiPAN, the main limitation of the aforementioned
CNN-based pansharpening approaches is the lack of physical
interpretability, and the fact that they do not use an appropriate
domain-specific structure. The weaknesses are, specifically, as
follows.
1) PNN treats pansharpening merely as a black-box learning

procedure, without considering the domain-specific struc-
ture useful to pansharpening, which results in a heavy
training process and limited learning ability.

2) DRPNN involves the structure of residual and the subse-
quent dimension reduction, which faces the problem that
the processed residual has no explicit physical interpre-
tation in a pansharpening context, and there is additional
computational burden for the dimension reduction step.

IV. PROPOSED METHODS

Based on the DiPAN framework in Section II, we develop
DiCNNs for pansharpening. The advantages of the proposed
DiCNNs can be summarized as follows.
1) We take into consideration the detail structure used in tra-

ditional CS/MRA-based pansharpening and then directly
learn MS details, without separating the PAN details and
the connected gains. This allows us to circumvent the
intermediate process needed to learn such two pieces of
information individually, thus reducing the model uncer-
tainty.

2) Compared to existing CNN-based pansharpening meth-
ods, our newly proposed methods have clear and mean-
ingful interpretation in the context of detail injection and
can also achieve excellent learning performance.

A. First Detail Injection Based CNN (DiCNN1)

Following DiPAN, our pansharpening method focuses on re-
constructing the MS details in a CNN manner. To achieve this
goal, we build a feedforward neural network, where a short-
cut connection skips three stacked convolutional layers and
the output of the shortcut is added to the output of stacked
layers to yield the predicted HRMS [as shown in Fig. 2(a)].
This network employs the concatenation of the pre-interpolated
LRMS and the PAN images as the input. However, only the
pre-interpolated LRMS is propagated through the shortcut con-
nection. In this way, the stacked layers utilize the interac-
tion of the pre-interpolated LRMS and PAN images to yield
only the MS details that can further supplement the LRMS
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Fig. 2. Architectures of (a) DiCNN1 and (b) DiCNN2.

image in order to produce the pansharpened HRMS image.
Specifically, our objective is to minimize the following loss
function:

�(θθθ) = ‖̂D(G;θθθ) + ˜M − Y‖2
F

=
1

Np

Np
∑

i=1

‖̂D(i)(G(i) ;θθθ) + ˜M(i) − Y(i)‖2
F (11)

where ̂D represents the MS details reconstructed with the input
G, the concatenation of the LRMS image and the PAN image,
and the parameter θθθ.
Practically, pansharpening is an ill-posed problem, which

means that many solutions exist for a given low-resolution
input. This is mathematically connected to an underdetermined
inverse problem, of which the solution is not unique. In theory,
such a problem can be relieved by constraining the solution
space with appropriate prior information, which influences the
overall performance of pansharpening. Fig. 3 depicts the basic
structure of several CNN-based methods, with Fig. 3(a) and
(b) representing the PNN and DRPNN (mentioned previously)
and Fig. 3(c) representing our DiCNN1. As we can observe,
the PNN directly learns the mapping between its input (the
pre-interpolated LRMS image plus the PAN image) and the
reconstructed HRMS image, without involving any prior knowl-
edge on structure, regarding pansharpening just as a black-box
learning problem. In the DRPNN, a residual structure is intro-
duced into pansharpening [as shown in Fig. 3(b)], motivated
by the residual learning process for image super-resolution
in [26]. However, this residual structure brings some inherent

weaknesses when used for pansharpening. First, DRPNN uses
the concatenation of the pre-interpolated LRMS image and the
PAN image as its input. This input goes through the stacked
layers and the shortcut connections simultaneously, which
forces the output of stacked layers pathway to be of the same
dimensionality as the input of the input concatenation, i.e., one
dimension more than that of the pansharpened HRMS image,
thus yielding a residual learning result that has no explicit
physical interpretation in a pansharpening context. Second, this
dimensionality mismatch has to rely on an extra convolutional
layer, which apparently aggravates the computational burden.
Different from PNN and DRPNN, our DiCNN1 takes into

consideration the structure of the detail injection framework. It
uses the concatenation of the pre-interpolated LRMS image and
the PAN image as the input of the stacked layers, whereas the
shortcut connection inputs only the pre-interpolated LRMS im-
age. This strategymakes the output of stacked layers pathway be
the MS details that can directly supplement the pre-interpolated
LRMS image to produce the HRMS image, which guarantees
that this CNN is able to directly learn the MS details. This im-
plies that DiCNN1 does introduce a domain-specific structure
with meaningful interpretation, meanwhile excluding the addi-
tional computational burden. On the other hand, compared to the
detail injection based CS and MRA methods, DiCNN1 learns
only the MS details per se, avoiding to separately process the
PAN details and the associated gains and, hence, reducing the
model uncertainty.

B. Second Detail Injection Based CNN (DiCNN2)

When a PNNmodel has been trained, the testMS images may
be changed; for example, bad bands may be present in the data.
In this situation, can a PNN model be transferred to pansharpen
those different kinds of test images?
As mentioned in previous sections, pansharpening utilizes

the details mainly existing in the PAN image to supplement the
LRMS image, so as to obtain the HRMS image. These details
can be viewed as the result from a filtering process, where
certain low-frequency components are filtered out [38], which
is a common rule for pansharpening on various sorts of images.
Under this rule, it therefore makes sense that, for a given CNN,
different sets of parameters suitable for pansharpening different
kinds of images have certain inherent connections. As a result, it
is possible to use a pre-trained CNN model on a certain kind of
images for pansharpening other kinds of images. This is actually
a transfer learning process [39]. By closely inspecting Fig. 2(a),
we can see that both the PAN image and the LRMS image are fed
into the convolutional layers pathway, which indicates that the
LRMS image will significantly affect the extraction of details
when the type of the MS image varies and, thus, reduce the
robustness of the model learning in the stack layers pathway.
To address this issue, we have developed another PNN, called
DiCNN2 [as shown in Fig. 2(b)]. In DiCNN2, only the PAN
image is connected to the convolutional layers pathway, which
removes the influence of the LRMS image on detail extraction.
Though this may also reduce the specificity of details for certain
kinds of MS images, the shortcut connection still inputs the
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Fig. 3. Structural comparison of (a) PNN, (b) DRPNN, (c) DiCNN1, and (d) DiCNN2, where the red dashed-line box marks the convolutional layers pathway
and

⊕

represents a pixelwise addition.

pre-interpolated LRMS image to force the convolutional layers
pathway to learn only the information about the MS details. The
objective function to be minimized for DiCNN2 is

�(θθθ) = ‖̂D(P;θθθ) + ˜M − Y‖2
F

=
1

Np

Np
∑

i=1

‖̂D(i)(P(i) ;θθθ) + ˜M − Y(i)‖2
F . (12)

In real applications, once a CNN is trained, the network param-
eters in the convolutional layers pathway are fixed, except for
those on the last layer. When a new kind of images are input,
only this layer needs to be fine-tuned.
It is noteworthy that DiCNN2 is also a kind of detail injec-

tion based CNN. In addition to performing pre-training transfer,
DiCNN2 can be seen as an alternative to DiCNN1 for usual
pansharpening tasks, where the data for training and prediction
come from the same sensors. Fig. 3(d) depicts the simplified
structure of such a PNN, which suggests that DiCNN2 can
provide similar benefits as DiCNN1, such as meaningful de-
tail injection interpretation, high computational efficiency, and
model simplification. Especially, DiCNN2 uses the PAN image
as the input of the stacked convolutional layers, in contrast with
the concatenation of the PAN image and multi-band LRMS im-
age, thus leading to even higher computational efficiency than
DiCNN1.
In summary, we developed DiCNNs, both of which exhibit

the capacity to perform the regular pansharpening task. But they
also differ in the following three main aspects.
1) DiCNN1 and DiCNN2 have different network structures.

As it can be observed in Fig. 2(a) and (b), and Fig. 3(c) and
(d), DiCNN1 inputs both the PAN image and the LRMS to
the convolutional pathway, whereas DiCNN2 inputs only
the PAN image to the convolutional pathway.

2) DiCNN1 and DiCNN2 are connected to different loss
functions. This is because the different structures of the
two CNNs lead to such different functions. Specifically,

the loss function of DiCNN1 is given by (11), while that
of DiCNN2 is given by (12). The convolutional kernels
that need to be resolved in DiCNN1 are coupled with the
concatenation of both the MS image and the PAN image,
but in DiCNN2 those kernels are convolved only with the
PAN image.

3) DiCNN1 and DiCNN2 can serve different purposes. Both
DiCNN1 and DiCNN2 are able to perform the regular
pansharpening task. However, DiCNN2 exhibits an addi-
tional ability to perform transfer learning. In DiCNN2, the
LRMS image is separated out from the input of the con-
volutional pathway, which means that the bottom layer of
the CNN’s convolutional pathway is not tightly relevant
to it. Thus, for a test LRMS image with bad bands, we
only need to fine-tune the top convolutional layer, which
is a kind of transfer learning.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of our pansharpening
methods, where three real remotely sensed image datasets are
considered. These datasets were acquired with WorldView-2,
IKONOS, and Quickbird sensors. During the evaluation, we
conduct reduced-resolution and full-resolution experiments, as
well as transfer learning experiments.
In the case of reduced-resolution assessments, we set experi-

ments using Wald’s protocol [40]. The MS image and the PAN
image were degraded to a lower resolution by using a Gaussian
filterwith a factor of 4 [41], and then the degradedMS imagewas
pre-interpolated to the same spatial size as the degraded PAN
image using a polynomial kernel (EXP) [4]. The criteria used
for the assessment include x-band extension of universal image
quality index (Qx) [42], spatial correlation coefficient (SCC)
[43], spectral angle mapper (SAM) [44], and Erreur Relative
Globale Adimensionnelle de Synthèse (ERGAS) [45]. These in-
dexes are widely used to measure the qualities of pansharpened
images, with the original MS image as the ground-truth.
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TABLE I
COMPARISON AMONG CNN-BASED METHODS

For fair comparison, we apply consistent parameter setting to
different CNN-based pansharpening methods. Specifically, the
number of convolutional layers in the convolutional pathway for
all PNNs in comparison are set to be 3. Thus, we can compare
the results under the basic network structure while avoiding the
influence of the deepness of the hidden layers. In addition, each
of them utilizes 64 filters with spatial size 3 × 3, except for the
last layer with Nb filters. Furthermore, all the training patches
and validation patches are with the spatial size 41 × 41, totally
being 25 600 patches, wherein 64 patches are randomly selected
from training data as a mini-batch for SGD. The number of
training iterations is set to 3.0 × 105 in all cases. The learning
rate is initially set to 0.0001 and it adaptively updates based
on Adam[46]. For CNN pansharpening, there are two major
phases during the processing. In the first phase, the CNN model
is solved with the training patches. In the second phase, the
CNN model is used to pansharpen the MS image.
The learning properties of the compared CNN-based meth-

ods are summarized in Table I, which report our DiCNN1 and
DiCNN2 built in pansharpening detail injection context. CNN-
based pansharpeningmethodswere trained using aGPU (Nvidia
GTX 1060 3GB with CUDA 8.1 and CUDNN V5) through
Caffe [47] in an Ubuntu 14.04 operating system, and tested on
MATLABR2016b via CPUmode (laptop with Intel I7 and 8GB
RAM) through the deep learning framework Matconvnet [48]
in Windows 10 operating system.
In addition to DiCNN1, DiCNN2, PNN, and DRPNN, sev-

eral representative CS/MRA methods, including Gram Schmidt
adaptive (GSA) [11], partial replacement adaptive compo-
nent substitution (PRACS) [49], ATWT [16], band-dependent
spatial-detail (BDSD) [50], and Generalized Laplacian pyra-
mid with context-based decision (GLP-CBD) [2] are also tested
for comparison. Notice that, there are no tricks, such as pan-
sharpening phase fine-tuning and more shortcut connection,
adopted in the considered CNN-based approaches, as the main
purpose focuses at exploring the interpretabilities of detail injec-
tion based CNNs and the connected theoretical validation with
some mathematical derivations on the simple forms as DiPNN1
and DiPNN2, respectively.

A. Experiment 1: WorldView-2 Washington Dataset

The dataset1 was acquired with the WorldView-2 sensor over
an urban area inWashington D.C., which provides a PAN image
formed from wavelength 450–800 nm, and a MS image with
eight bands, including four standard bands (blue, green, red,
and near infrared 1) and four new bands (coastal, yellow, red
edge, and near infrared 2). The resolution ratio R is 4, and the

1[Online]. Available: https://www.digitalglobe.com/resources/product-
samples.

TABLE II
QUALITY INDEXES OF DIFFERENT PANSHARPENING METHODS UNDER A

REDUCED-RESOLUTION QUALITY ASSESSMENT ON A 256 × 256
SUBSCENE OF A WORLDVIEW-2 DATASET

The best and second-best results are marked in bold and italic.

radiometric resolution is 11b, with the spatial resolution of the
PAN image and that of the MS image being 0.46 m and 1.84 m,
respectively. We choose two scenes with 256 × 256 pixels for
tests in the reduced-resolution and full-resolution experiments
separately. In the CNN model solving phase on this dataset,
PNN and DiCNN1 take roughly 2.8 h, while DiCNN2 takes
2.5 h and DRPNN takes 3 h. This is due to the fact that the
first convolutional layer involves fewer free parameters, whereas
DRPNNcontains an extra convolutional layer compared to other
three CNNs.
Table II shows the results of the reduced-resolution quality

assessment. The computation times for the pansharpening phase
are also included. Aswe can observe, CNN-basedmethods yield
much better pansharpening quality than theCS-based andMRA-
based methods. DiCNN1 and DiCNN2 achieve the highest Q8,
SAM, ERGAS, and SCC scores among all compared methods,
including CNN-based methods, and meanwhile DiCNN2 is the
fastest among all CNN-based methods.
Fig. 4 displays the images of reduced-resolution experimental

results. It shows that the pansharpened images yielded by CNN-
based methods look much more similar to the ground-truth,
without noticeable artifacts or spectral distortions. Fig. 5 shows
the detail images, which are produced with the difference be-
tween the pansharpened HRMS image and the pre-interpolated
LRMS image. The ground-truth details are achieved by the
subtraction between the full-resolution MS image and the pre-
interpolated one. The detail images are also in favor of the
aforementioned observations, as it can be seen in the central
circle area. For the CNN-based methods, the performances are
hard to distinguish, but by investigating the spectral preservation
of ground objects with small sizes, it is clear that DiCNN1 helps
to impede spectral distortion more efficiently, as it can be seen
in the bottom leftmost part of Fig. 4(h)–(k). Fig. 6 shows the
residual images that are generated by the difference between the
pansharpened HRMS image and the ground-truth image. From
Fig. 6, we can see that the proposed methods exhibit very good
performance.
Fig. 7 displays the full-resolution experimental results. The

CNN-basedmethods exhibit sharper results than the other tested
methods, especially in the vegetation areas. DiCNN1, PNN,
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Fig. 4. Pansharpening results for a Worldview-2 dataset (composited with red, green, blue bands). (a) Ground-truth. (b) EXP. (c) GSA. (d) PRACS. (e) ATWT.
(f) BDSD. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNN1. (k) DiCNN2.

Fig. 5. Detail images of theWorldview-2 dataset. (a) Ground-truth. (b) GSA. (c) PRACS. (d) ATWT. (e) BDSD. (f) GLP-CBD. (g) PNN. (h) DRPNN. (i)DiCNN1.
(j) DiCNN2.

Fig. 6. Differences between the pansharpened images and the ground-truth of the Worldview-2 dataset. (a) EXP. (b) GSA. (c) PRACS. (d) ATWT. (e) BDSD.
(f) GLP-CBD. (g) PNN. (h) DRPNN. (i)DiCNN1. (j) DiCNN2.
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Fig. 7. Full-resolution pansharpening results for the WorldView-2 dataset. (a) PAN image. (b) EXP. (c) GSA. (d) PRACS. (e) ATWT. (f) BDSD. (g) GLP-CBD.
(h) PNN. (i) DRPNN. (j) DiCNN1. (k) DiCNN2.

TABLE III
QUALITY INDEXES OF DIFFERENT PANSHARPENING METHODS UNDER
REDUCED-RESOLUTION QUALITY ASSESSMENT ON A 256 × 256

SUBSCENE OF THE IKONOS DATASET

The best and second-best results are marked in bold and italic.

and DiCNN2 slightly overpass DRPNN in terms of reducing
artifacts.

B. Experiment 2: IKONOS Hobart Dataset

The dataset2 represents an urban and harbor area of Hobart,
Australia. It was acquired by the IKONOS sensor, which collects
data in the visible and near-infrared spectrum ranges. The MS
sensor is characterized by four bands (blue, green, red, and near
infrared) and also a PAN channel with band range from 450 to
900 nm. The resolution of MS is 4 m and PAN is 1 m. The
radiometric resolution is 11b. Different areas with size of 256 ×
256 pixels are used for reduced-resolution and full-resolution
experiments, respectively.
Table III tabulates the results of our reduced-resolution qual-

ity assessment on the IKONOSHobart dataset. Similar phenom-
ena to the ones observed with the previousWorldView-2 dataset
can be appreciated. Specifically, CNN-based methods achieve
better pansharpening quality than the CS-based andMRA-based
methods. DiCNN1 achieves the highest Q4, SAM, ERGAS, and
SCC scores, while PNN is the most time consuming. DiCNN2
achieves the least computational time among CNN-based
methods.

2[Online]. Available: http://www.isprs.org/data/default.aspx.

Fig. 8 displays the reduced-resolution experimental results.
As it can be observed, CS/MRA-based methods exhibit poorer
pansharpening results than CNN-based methods, as it can be
seen in the edges of roofs shown in Fig. 8(c)–(g). Furthermore,
DiCNN1 and DiCNN2 look most similar to the ground-truth in
terms of spectral fidelity, as it can be seen in the vegetation area
in the top left part of Fig. 8(j) and (k). Fig. 9 shows the detail
images learned fromvariousmethods. They also support the pre-
vious observations and, additionally, confirm that DiCNN1 per-
forms slightly better than DiCNN2 in terms of edge restoration,
as it can be seen in the circle vegetation area in the bottom left-
most part of Fig. 9(i) and (j). Fig. 10 displays the full-resolution
experimental results on IKONOS Hobart dataset. Similar
observations can be made with regards to the experimental re-
sults reported for the WorldView-2 Washington dataset.

C. Experiment 3: Quickbird Sundarbans Dataset

The dataset3 represents a forest area of Sundarbans in India. It
was obtained by the QuickBird sensor, which provides a high-
resolution PAN image with spectral cover range from 760 to
850 nm and with resolution of 0.6 m, and a four-band (blue,
green, red and near infrared)MS image with resolution of 2.4 m.
The radiometric resolution is also 11b. We selected different
areas with size of 256 × 256 pixels for our reduced-resolution
and full-resolution experiments, respectively.
Table IV shows the reduced-resolution quality assessment

on the Chilika Lake dataset. We can easily conclude that
similar phenomena also arise in this dataset. CNN-based
methods achieve better pansharpening quality than CS-based
and MRA-based methods. DiCNN1 overpasses others in terms
of Q4, SAM, ERGAS, and SCC scores. DiCNN2 is the fastest
among CNN-based methods, with comparable performance
to DRPNN.
Fig. 11 displays the reduced-resolution experimental results.

DiCNN1, DiCNN2, and DRPNN look much more similar to
the original MS image, but DiCNN2 exhibits less ringing ar-
tifacts, such as the edges of the lakes in the leftmost part of
Fig. 11(i)–(k). This phenomenon occurs more frequently in
PNN. Meanwhile, EXP and PRACS result in significant

3[Online]. Available: http://glcf.umd.edu/data/quickbird/datamaps.shtml.

http://glcf.umd.edu/data/quickbird/datamaps.shtml
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Fig. 8. Pansharpening results for IKONOS dataset. (a) Ground-truth. (b) EXP. (c) GSA. (d) PRACS. (e) ATWT. (f) BDSD. (g) GLP-CBD. (h) PNN. (i) DRPNN.
(j) DiCNN1. (k) DiCNN2.

Fig. 9. Detail images of IKONOS dataset. (a) Ground-truth. (b) GSA. (c) PRACS. (d) ATWT. (e) BDSD. (f) GLP-CBD. (g) PNN. (h) DRPNN. (i) DiCNN1.
(j) DiCNN2.

Fig. 10. Full-resolution pansharpening results for the IKONOS dataset. (a) PAN image. (b) EXP. (c) GSA. (d) PRACS. (e) ATWT. (f) BDSD. (g) GLP-CBD.
(h) PNN. (i) DRPNN. (j) DiCNN1. (k) DiCNN2.
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Fig. 11. Pansharpening results for the Quickbird dataset. (a) Ground-truth. (b) EXP. (c) GSA. (d) PRACS. (e) ATWT. (f) BDSD. (g) GLP-CBD. (h) PNN.
(i) DRPNN. (j) DiCNN1. (k) DiCNN2.

Fig. 12. Detail images of the Quickbird dataset. (a) Ground-truth. (b) GSA. (c) PRACS. (d) ATWT. (e) BDSD. (f) GLP-CBD. (g) PNN. (h) DRPNN. (i) DiCNN1.
(j) DiCNN2.

Fig. 13. Full-resolution pansharpening results for the Quickbird dataset. (a) PAN image. (b) EXP. (c) GSA. (d) PRACS. (e) ATWT. (f) BDSD. (g) GLP-CBD.
(h) PNN. (i) DRPNN. (j) DiCNN1. (k) DiCNN2.

blurring effects. Fig. 12 shows the detail images learned from
various methods, which also support the observations men-
tioned above. Fig. 13 displays the full-resolution experimental
results. EXP has apparent blurring effects, whereas PRACS and
DiCNN2 lead to subtle blurring effects. Blurring yielded from

DiCNN2 is due to the fact that there is only the PAN image
as the input of the convolution layers pathway, which makes it
possible that the details complement to the LRMS image are
learned insufficiently. In the meantime, DiCNN1 exhibits less
artifacts than DRPNN and PNN.
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TABLE IV
QUALITY INDEXES OF DIFFERENT PANSHARPENING METHODS UNDER
REDUCED-RESOLUTION QUALITY ASSESSMENT ON A 256 × 256

SUBSCENE OF THE QUICKBIRD DATASET

The best and second-best results are marked in bold and italic.

It is worth noting that the spectral range of the PAN image in
the Quickbird Sundarbans dataset spans only 90 nmwide, which
is far narrower than that of the PAN images in WorldView-2
Washington dataset and IKONOS Hobart dataset, i.e., 350 and
402 nm. This implies that, when we perform pansharpening on
the Quickbird Sundarbans Dataset, the PAN image will offer
far less information to compensate for the spectral range differ-
ence between the PAN image and the MS image and mine the
useful details. As we have mentioned previously, DiCNN1 and
DiCNN2 have different structures. In DiCNN1, both the PAN
image and the LRMS image are forwarded to the convolutional
pathway, whereas in DiCNN2 only the PAN image is fed into the
convolutional pathway, which means that DiCNN1 comprises
two sources of information in its convolutional pathway and,
hence, it exhibits higher potential to acquire information that
is complementary to the low-resolution MS image. In contrast,
DiCNN2 heavily relies on the PAN image to learn useful details
for pansharpening. As discussed above, compared to DiCNN1,
DiCNN2 depends much more on the PAN image to mine de-
tails for pansharpening. On the other hand, the PAN image in
Quickbird Sundarbans Dataset has far narrower spectral range
and, thus, it tends to offer far less information that is useful for
pansharpening. Therefore, when both DiCNN1 and DiCNN2
are applied to Quickbird Sundarbans Dataset, DiCNN2 tends
to yield worse pansharpening results than those achieved by
DiCNN1, as shown in Fig. 11(j) and (k), and Fig. 13(j) and (k).

D. Experiment 4: Transfer Learning

To demonstrate the robustness of DiCNN2 under the situation
that the number of bands of the test MS image has varied, we
use the WorldView-2 Washington dataset and IKONOS Hobart
Dataset in this experiment. Here, DiCNN2 is first trained on
the original dataset. Then some of the MS bands are removed,
and the final convolutional layers are fine-tuned to accommo-
date the current number of bands with 1.0 × 104 training it-
erations, much less than that in the previous training step. For
theWorldView-2Washington dataset with eight MS bands, four
bands are removed. For the IKONOS Hobart Dataset with four
MS bands, one band is removed.
Table V shows a quantitative assessment result on the

WorldView-2 Washington dataset. As shown in the table,

TABLE V
QUALITY INDEXES OF CNN-BASED METHODS ON A 256 × 256 SUBSCENE OF

A FOUR-BAND WORLDVIEW-2 DATASET

The best and second-best results are marked in bold and italic.

TABLE VI
QUALITY INDEXES OF CNN-BASED METHODS ON A 256 × 256 SUBSCENE OF

THE THREE-BAND IKONOS DATASET

The best and second-best results are marked in bold and italic.

DiCNN2 yields the best scores in all evaluation metrics. It is
remarkable that the time DiCNN2 needs for the training phase
is less than half of the longest one, which results from the fact
that DiCNN2 only needs to fine-tune the final convolutional
layer.
We also apply a similar experiment using the IKONOS data.

Since the IKONOS dataset consists of four bands, we ran-
domly choose three of them for testing. The four-band dataset
is used to train DiCNN2, while the three-band one is applied to
fine-tune the last layer of DiCNN2 and train other CNN-based
methods.
Table VI tabulates the pansharpening results obtained by dif-

ferent CNN-basedmethods. As it can be observed,DiCNN2out-
performs others in most quality indexes. In addition, although
DiCNN1 attains comparative results with regards to DiCNN2,
the training time of the latter is far less than the former.

VI. CONCLUSION AND FUTURE LINES

In this paper, we have developed two CNN-based pansharp-
ening methods, i.e., DiCNN1 and DiCNN2, based on a detail
injection framework (DiPAN), which classical CS/MRA-base
pansharpening methods can be ascribed into. In our newly de-
veloped DiCNN1 and DiCNN2, the MS details are learned in
an end-to-end manner, which has explicit physical meaning
and avoids separately dealing with injection gains and PAN
details, as it is the case in traditional CS and MRA methods.
Our DiCNN1 and DiCNN2 methods can gain low initial loss,
which tends to yield faster convergence and exhibit excellent
pansharpening performance. Particularly, DiCNN2 can addi-
tionally realize transfer learning when the type of the MS image
or the PAN image changes, which is a highly desirable property.
In the future, we will explore the possibility of designing PNNs
with more hidden layers and more complex inter-connections
among multiple convolutional layers.
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APPENDIX

In this appendix, we provide a careful analysis of the effi-
ciency of the proposed approach. The appendix includes two
parts. First, we show that the proposed framework has good
initialization. Then, we show that the proposed framework has
good optimization.

A. Analysis of the Initialization of the Framework

CNNmodels are usually formulated as non-convex optimiza-
tion problems with many local minima [51]–[53]. To solve such
optimizations, the iterative gradient descent method is widely
used, where the initialization and the gradient are usually critical
for the solution.
Intuitively, better initializations are beneficial to attain better

gradient descent solutions. Let us investigate such an initializa-
tion issue in more detail. For the four PNNs illustrated in Fig. 3,
the output of the stacked convolutional layers pathway can be
formulated as follows:

Z3 = W3 ∗ ϕ(W2 ∗ ϕ(W1 ∗ X + B1) + B2) + B3 (13)

where ∗ denotes convolution, ϕ(·) represents the ReLU activa-
tion function, and Zl = Wl ∗ ϕ(Wl−1 ∗ ϕ(Zl−1) denotes the
output of the lth convolutional layer. Zl is in 3-D data arrange-
ment and thus a three-way tensor, the concept that has been
previously mentioned in the description of (8). Note that Z3 has
specific meanings for different PNNs, where it represents the
MS details ̂D for our DiCNN1 and DiCNN2, the residuals ̂R
for DRPNN, and the pansharpened HRMS image ̂M for PNN.
In this paper, the initialization of CNN parametersWl andBl

are assumed to follow an i.i.d. zero-mean random distribution
and be independent of the neuron output of the l − 1th layer
Al−1 = ϕ(Wl−1 ∗ Al−2 + Bl−1). Obviously, the CNN input
X can be used asA0 . For later use, we present a property about
Z3 and its proof below as

E{{Z3}(1)Y}
= E{{{W3 ∗ ϕ(Z2)}(1) + {B3}(1)}Y}
= E{{W3 ∗ ϕ(Z2)}(1)Y} + E{{B3}(1)Y}

= E

{{

∑

m

∑

n

∑

l

W3(m,n, l)

×ϕ(Z2(m−x, n−y, l−b))

}

(1)

Y

⎫

⎬

⎭

+E{{B3}(1)}E(Y)

= E

{{

∑

m

∑

n

∑

l

W3(m,n, l)

×{ϕ(Z2(m − x, n − y, l − b))}(1)
}

Y
}

+ 0 · E(Y)

= E

{

∑

m

∑

n

∑

l

W3(m,n, l)

× {ϕ(Z2(m − x, n − y, l − b))}(1)Y

}

=
∑

m

∑

n

∑

l

{0 · E{{ϕ(Z2(m − x, n − y, l − b))}(1)Y}}

= 0 (14)

where Y is a matrix not necessarily independent of Z3 and
{·}(1) means the unfolding of a three-way tensor along its first
mode, and the following:

{W3 ∗ ϕ(Z2)}(1)

=

{

∑

m

∑

n

∑

l

W3(m,n, l)ϕ(Z2(m−x, n−y, l − b))

}

(1)

×
∑

m

∑

n

∑

l

W3(m,n, l)

× {ϕ(Z2(m − x, n − y, l − b))}(1) (15)

are utilized.
We will first justify that our DiCNNs can achieve bet-

ter initialization. First, consider DiCNN1. Its loss function
E(‖̂D + ˜M − Y‖2

F ) can be rewritten as

E(‖̂D + ˜M − Y‖2
F )

= E{Trace{(̂D + ˜M − Y)(̂D + ˜M − Y)T }}

= E{Trace(̂D̂DT ) + Trace(̂D˜MT ) − Trace(̂DYT )

+ Trace(˜M̂DT ) + Trace(˜M˜MT ) − Trace(˜MYT )

− Trace(Y ̂DT ) − Trace(Y˜MT )

+ Trace(YYT )}

= E{Trace(̂D̂DT ) + 2Trace(̂D˜MT ) − 2Trace(̂DYT )

+ Trace(˜M˜MT ) − 2Trace(˜MYT )

+ Trace(YYT )}

− 2Trace{E(̂DYT )} + Trace{E(˜M˜MT )}

− 2Trace{E(˜MYT )} + Trace{E(YYT )}

= Trace{E(̂D̂DT )} + Trace{E(˜M˜MT )}

− 2Trace{E(˜MYT )} + Trace{E(YYT )} (16)

where the equations

Trace{E(̂D˜MT )} = 0 (17)

Trace{E(̂DYT )} = 0 (18)

are utilized, which can be obtained through (14).
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Let us now consider PNN; its loss function E(‖̂M − Y‖2
F )

can be transformed as

E(‖̂M − Y‖2
F )

= E{Trace{(̂M − Y)(̂M − Y)T }}

= E{Trace(̂M̂MT − ̂MYT − ŶMT + YYT )}

= E{Trace(̂M̂MT ) − 2Trace(̂MYT ) + Trace(YYT )}

= Trace{E(̂M̂MT )} − 2Trace{E(̂MYT )}

+ Trace{E(YYT )}

= Trace{E(̂M̂MT )} + Trace{E(YYT )} (19)

where the equation

Trace{E(̂MYT )} = 0 (20)

is involved, which can also be obtained via (14).
Recall that ˜M represents the pre-interpolated LRMS and Y

denotes the ideal HRMS. Therefore, (˜M − Y) represent MS
details whose energy tends to be significantly less than that of
pre-interpolated LRMS. To compare the initialization of loss
function of DiCNN1 shown in (16) with that of PNN shown in
(19), we have

E(‖̂D + ˜M − Y‖2
F ) − E(‖̂M − Y‖2

F )

= Trace{E(̂D̂DT )} + Trace{E(˜M˜MT )}

− 2Trace{E(˜MYT )} + Trace{E(YYT )}

− Trace{E(̂M̂MT )} − Trace{E(YYT )}

= Trace{E(̂D̂DT )} + Trace{E(˜M˜MT )}

− 2Trace{E(˜MYT )} − Trace{E(̂M̂MT )}

= Trace{E(˜M˜MT )} − 2Trace{E(˜MYT )}

= Trace{E(˜M˜MT )}−2Trace{E{˜M(YT +˜MT −˜MT )}}

= −Trace{E(˜M˜MT )} − 2Trace{E{˜M(YT − ˜MT )}}

= 2Trace{E{˜M(˜MT − YT )}} − Trace{E(˜M˜MT )}
< 0 (21)

where the equation

Trace{E(̂D̂DT )} = Trace{E(̂M̂MT )} (22)

is utilized during the derivation from step 2 to step 3. This is
reasonable, as ̂D and ̂M stand for the outputs of convolutional
layers pathways of DiCNN1 and PNN, respectively. In the initial
phases of these two CNNs, their convolutional layers pathways
have similar structure, similar inputs, and the same distributed
network parameters. Moreover, the diagonal entries of ˜M˜MT

TABLE VII
TRACE VALUES

are always greater than or equal to zero. But, in a real image
scenario, it is impossible that all of the diagonal entries are equal
to zero. Accordingly, we have

Trace{E(˜M˜MT )} > 0. (23)

Taking a close inspection of the term 2Trace{E{˜M(˜MT −
YT )}} in the last equality of (21), we find that (˜MT − YT )
exactly represents the ideal MS details whose energy should
account for small portion that of the HRMS image and, thus, we
have

Trace{E(˜M˜MT )} > 2|Trace{E{˜M(˜MT − YT )}}|. (24)

After using (23) and (24), problem (21) results in

E(‖̂D + ˜M − Y‖2
F ) < E(‖̂M − Y‖2

F ). (25)

In summary, we can conduct that, the initial loss of DiCNN1
is smaller than that of PNN. For verification, let

T1 = Trace{E(˜M˜MT )}
and

T2 = 2|Trace{E{˜M(˜MT − YT )}}|
be the two traces in (24); Table VII illustrates T1 and T2 com-
puted on three real datasets, which clearly shows that T1 � T2,
verifying that DiCNN1 has a better initialization than PNN.

B. Analysis of the Optimization of the Framework

Since the representations for the gradients are sophisticated
and incomparable, it is difficult to quantitatively assess the influ-
ence of the gradients on the optimization processes of the four
PNNs. Here, we resort to an empirical analysis instead. Fig. 14
illustrates the training losses of the four CNN methods on three
datasets. It is observable that the initial losses of DiCNN1 and
DiCNN2 are less than those of PNN and DRPNN, correspond-
ing to the theoretical analysis presented earlier in the Appendix
A, which means that DiCNN1 and DiCNN2 can achieve bet-
ter initializations. PNN not only exhibits worse initialization,
but also its iteration process (involving its gradient) does not
change the inferior tendency of its loss. During the iterative
process, PNN always yields a loss higher than that of DiCNN1
and DiCNN2. That is, the impact of the gradient-based iteration
process is not strong enough to compensate for the loss resulting
from an inappropriate initialization. DRPNN exhibits the worst
initialization. Although its gradient-involved iterative process
makes its loss drop fast, it is still always higher than that of
DiCNN1 during the iterative process.
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Fig. 14. Training losses of DiCNN1, DiCNN2, PNN, and DRPNN. (a) IKONOS image. (b) Quickbird image. (c) WorldView-2 image.
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