
Remotely Sensed Big Data:
Evolution in Model
Development for Information
Extraction
BING ZHANG , ZHENGCHAO CHEN, AND DAILIANG PENG
Chinese Academy of Sciences, Beijing 100094, China

JÓN ATLI BENEDIKTSSON
University of Iceland, IS 107 Reykjavík, Iceland
BO LIU
Nanjing University of Information Science and Technology, Nanjing 210044, China
LEI ZOU
Texas A&M University, College Station, TX 77843 USA
JUN LI
Sun Yat-sen University, Guangzhou 510275, China
ANTONIO PLAZA
Hyperspectral Computing Laboratory, University of Extremadura, E-10003 Cáceres, Spain

S ince the 1960s, remote sensing (as an innovative, comprehen-
sive, and interdisciplinary academic area) has been adopted in a
wide range of disciplines related to Earth observation, including
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hydrology, ecology, oceanogra-
phy, glaciology, geology, military,
intelligence, business, economy,
and planning [1]–[3]. The con-
stant development of the remote
sensing image acquisition tech-
nology now allows for the col-
lection of a wide variety of
images with different character-
istics and resolutions, obtained
by remote sensing instruments
mounted on spacecraft or air-
craft platforms. These images
record some type of signal
or energy measured from the
Earth’s surface, which depends
on the type of sensor used.

1) Active instruments [2],
[3] measure the pulses of
artificial energy that scan the
surface, such as sound navi-
gation and ranging (SONAR),
radio detection and ranging
(RADAR), and other related
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techniques, such as synthetic
aperture radar (SAR) and inter-
ferometric SAR (InSAR), or light
detection and ranging (LiDAR).
These instruments produce the
artificial (acoustic or laser) signal
themselves and record the reflect
responses from the observed sur-
face.

2) Passive instruments [2], [3]
record the energy emitted by
the observed surface, such as
the thermal radiation of the
objects and elements contained
in the observed area, or the
sunlight that these elements
absorb and reflect. Optical
remote sensing instruments
(including multispectral and
hyperspectral sensors) measure
the reflectance spectrum of the
objects and materials contained
into a target area, which is
determined by their physical
and chemical properties. That
is, these data collect information
describing the ground materials’
behavior across the electro-
magnetic spectrum, capturing
the reflected solar radiation in
the visible, near-infrared (NIR),
and short-wave infrared (SWIR)
wavelengths.

Using mathematical models,
the recorded information can be
interpreted in order to describe
terrain characteristics [4], [5]. From
the 1960s to 1980s, the analysis of
remotely sensed data was mainly
accomplished by means of digi-
tal signal processing approaches.
Applications such as target detec-
tion, image classification, and land
surface parameter extraction were
mainly based on statistical models,
applied to optical and microwave
data [6]–[8]. The seminal works
of Richards [2], Strahler [9], Lee
et al. [10], and Cressie [11] adopted
traditional statistical methods to
remote sensing image analysis and
modeling. Swain and Davis [12]
studied the characteristics of various
data acquisition systems and the
fundamentals of pattern recognition
through statistical models used for
information extraction from remotely

sensed data. Their works established
the foundations in the development
of statistical modeling techniques for
remote sensing data analysis and
defined a “digital signal processing
era” in remote sensing technology.
Commonly used information extrac-
tion models included regression
models applied to infrared [13] and
hyperspectral data [14], supervised
classification techniques based on rel-
atively simple statistics (such as max-
imum likelihood and decision trees),
unsupervised classification (fuzzy
clustering) [15]–[17], grayscale
stretching and strengthening models
(wavelet analysis [18]–[20], fuzzy
mathematics [21], [22] and random
fields [23], [24]), visual interpre-
tation, and target detection models
based on human experience [24].
However, statistical models faced
important challenges, such as sample
representation and model versatility,
because the quality of remote
sensing images is highly susceptible
to external factors, such as the
atmospheric conditions and terrain
characteristics.

In the 1990s, remote sensing
science and technology entered a
“quantitative remote sensing era”
that was characterized by the
consideration of physical information
in remotely sensed data [5]. A
landmark event was the fact that
the Earth Observing System (EOS)
satellite began to provide global
quantitative remote sensing products
through the moderate resolution
imaging spectroradiometer (MODIS),
which allowed researchers to develop
physical models from these products.
By investigating the processes and
the consequences of the interactions
between remote sensing signals
and transmission media and tar-
gets, physical models were able to
quantitatively invert and calculate
target geoscience parameters. Such
physical models included radiation
transfer models [26]–[29], geometric
optical models [30]–[33], hybrid
models [34], and process models
[35]–[39] developed to characterize
plant growth mechanisms, the ter-
restrial carbon cycle, the nitrogen

cycle, or the water cycle. Based on
the fundamental physical processes
and mechanisms, physical models
either provide a dynamic evolution
process, with definite analytical
equations, or clear physical meaning,
with detailed physical quantities
[40]. Compared with statistical
models, quantitative models could
address more diverse applications,
thus improving the capability of
remote sensing technology when
recognizing the essential features of
ground objects. However, developing
physical models is challenging
because these models are usually
based on complicated nonlinear
equations and require many input
parameters and a priori knowledge
about the observed objects. In order
to overcome these issues in practice,
some approximations need to be
made [28], [29], [32]. In other words,
statistical models are easier to derive
and might yield higher accuracies
than physical models in some
case studies, but statistical models
are difficult to apply in different
regions and contexts due to spatial
heterogeneity. Physical models are
based on solid physical mechanisms
and could address more diverse
applications. However, developing
physical models is challenging due
to complex nonlinear relationships
between the electromagnetic signals
and objects and the need for many
input variables as well as a priori
knowledge. As a result, hybrid
models combining statistical and
physical models are widely used,
and normally comprise the use
of a quantitative remote sensing
product or physical model to invert
an intermediate parameter, and then
adopting statistical models together
with other parameters to invert or
estimate the target parameters using
both microwave [41] and optical [42]
remote sensing data.

In recent years, with the rapid
development of aerospace technology
(from micro/nanosatellites to satel-
lite constellation networks and future
intelligent remote sensing satellite
systems, from drone to stratospheric
airships, and from ground observation
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stations to wireless systems), the sys-
tems used for Earth observation
now confirm a full network inte-
grating aerospace and Earth-based
instruments. Such integrated network
exhibits the potential to provide high-
dimensional and high-frequency Earth
observation data. The amount of
data collected from different imag-
ing modes, bands, resolutions, obser-
vation scales, and dimensions, as
well as its sources of auxiliary cali-
bration and verification are increas-
ing tremendously [2]. The con-
cept of big data [43] conveys a
new scientific discovery and informa-
tion mining approach, which covers
both the data itself and the mining
methodologies. Compared with tra-
ditional remote sensing information
extraction approaches, which mainly
adopt statistical and physical models,
contemporary remote sensing data
information extraction technologies
are gradually entering a “remotely
sensed big data era,” which is char-
acterized by intelligent information
extraction. Under this background,
remotely sensed data information
extraction will face new opportunities
and challenges in terms of methods
and applications.

I. D E E P L E A R N I N G F O R
R E M O T E L Y S E N S E D B I G
D ATA E X P L O I TAT I O N

Since the beginning of the 2010s,
the rapid development of massive,
multisource, and heterogeneous data
has not only driven the development
of data analysis methods and tech-
nologies but also changed the way
humans use remotely sensed data to
understand the world. Traditionally,
information extraction models were
primarily constructed through experi-
mental and theoretical methods, rely-
ing significantly on prior knowledge
and experience in the remote sensing
area. With the tremendous availability
of multisource remotely sensed data,
information extraction and knowl-
edge discovery now mainly focus
on the data itself rather than on
the inherent prior knowledge. These
approaches are mainly established by

means of deep mining and learning
from large amounts of data.

The models driven by a large num-
ber of data samples for knowledge
discovery and information extraction
are commonly referred to as data
models. Such models need to be
trained by intelligent methods using a
large number of samples in order to
automatically and intelligently extract
relevant information and discover
knowledge. This process not only
requires high-performance comput-
ing architectures but also necessitates
new data processing methods. In prac-
tice, available high-performance com-
puting architectures can hardly satisfy
the processing precision and efficiency
of remotely sensed big data [47].
Consequently, intelligent information
extraction through machine learning
algorithms has gradually become a
necessary requirement in the cur-
rent remotely sensed big data era.
Specifically, shallow learning methods
(including artificial neural networks
and support vector machines) have
been widely applied [48]–[52]. How-
ever, the sample data size used in
shallow learning methods is relatively
small, and the number of modeled
parameters is quite limited. Hence,
the generalization ability of these
models is weak, which restricts the
universal applications of data models.

Deep learning has been proposed
to overcome the above-mentioned
issues [53], [54]. As a new field in
artificial intelligence, deep learning
has achieved breakthroughs in various
areas [53], such as image recognition
and speech recognition [55]–[58],
molecular structure analysis [59],
particle physics [60], and gene
expression [61]. In 2013, deep
learning was listed as the first in the
top ten technological breakthroughs
[64] because it has surpassed humans
in many tasks [54], [62], [63].
Remote sensing images observe
terrain features at large scales under
complex scenes. Different terrain
features have a strong scale effect,
prominent spatial position patterns,
significantly distinct electromagnetic
wave characteristics, and unique
geographical environments [62],

[65]. Under these intricate factors, the
limitations of human prior knowledge
and the challenge of massive data
processing greatly restrict the appli-
cation of traditional methods, such
as statistical models, physical models,
and shallow learning that is based on
data models in remote sensing infor-
mation extraction. Developing fast,
efficient, and intelligent approaches
to extract information from massive
and complex remote sensing data
becomes the fundamental task of
remote sensing in the data model era.
The excellent performance of deep
learning in other areas provides an
unprecedented opportunity to solve
this challenge [66].

Deep learning satisfies the urgent
needs in contemporary remote sens-
ing applications by providing a high-
level methodological and imple-
mentation approach for intelligent
information extraction. As a machine
learning method based on data
representation, it also offers signif-
icant advantages over traditional
approaches for remote sensing
information processing [53].

1) It mainly focuses on features and
information extraction from the
data itself rather than on expert
prior knowledge or manual
selection; hence, the dependence
of traditional remote sensing
information processing methods
on prior knowledge can be sig-
nificantly alleviated [62], [67].

2) The fundamental unit of deep
learning is pixel convolution that
combines low-level features to
form more abstract high-level
features; compared with tradi-
tional pixel processing methods
that cannot capture the abun-
dant semantic information pre-
sent in the scenes, deep learning
is able to extract rich semantic
features contained in remotely
sensed images [67]–[69].

3) The multilayer structure of
deep neural networks is able
to extract multiscale image
information [70].

4) Deep neural networks provide
complex architectures with hun-
dreds of layers and thousands of
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Fig. 1. Development periods in remote sensing models for information extraction.

parameters. Such architectures
are able to model the nonlinear
relationships between remote
sensing data and land surfaces,
capturing multidimensional fea-
tures, and revealing complex ter-
rain characteristics. Hence, data
models based on deep learn-
ing now play an important role
in remote sensing information
extraction [71].

Currently, deep-learning approa-
ches are widely applied in many
remotely sensed data processing dis-
ciplines, including target detection,
image classification, and parameter
retrieval. For instance, an impor-
tant requirement for target detec-
tion is how to extract effective
features from image data with com-
plex backgrounds. In practice, targets
of interest can be man-made objects,
such as airplanes, vehicles, ships,
pipelines, tanks, airports, and build-
ings, or natural objects with unique
spectral characteristics, such as rocks,
drug crops, and leaking oil and gas
[72]–[75]. The intrinsic features of
the target can be easily extracted by
deep-learning approaches. The aggre-
gation of low-level features and/or
advanced semantic features can sig-
nificantly improve the feature rep-
resentation of the target and, thus,
improve the accuracy and efficiency
of the target detection process [76],
[77]. In the context of remote sensing
image classification, which is another
important remote sensing applica-
tion, deep learning can not only
extract the structural features of high-
dimensional spectral data efficiently

but also model the characteristics of
different types of features, textures,
objects, and so on. These complex
spatial patterns present in images are
usually robust and invariant [68],
[78], [79]. In addition, deep learn-
ing has been successfully applied
in the fields of hyperspectral image
classification [68], [79], multisource
remote sensing image classification
(including SAR and optical data)
[80], high-spatial resolution image
classification [81], multiscale classi-
fication feature learning [70], spec-
tral and spatial information fusion
[82], and so on. These method-
ological approaches are still devel-
oping and expanding. In addition,
multilayer neural networks can bet-
ter estimate complex nonlinear func-
tions involving multiple variables. The
variable relationships hidden in the
data can be autonomously learned,
which is well-suited for remote sens-
ing parameter inversion containing
complex or unknown processes. Com-
pared with a large number of applica-
tions in target recognition and image
classification, the applications of deep
learning in remote sensing parame-
ter inversion are still in their ini-
tial exploration stage [71]. Previous
studies attempted to perform fusion
of different kinds of data (such as
optical, SAR, and LiDAR) to evaluate
sea ice density [83], biomass inver-
sion [84], leaf nitrogen concentration
estimation [85], sea surface temper-
ature [86], PM2.5 content inversion
[87], cloud optical thickness estima-
tion [71], soil water content estima-
tion, and other aspects [88]. Several

applications have already achieved
encouraging results, while the poten-
tial of these applications still needs
to be further explored by the remote
sensing community.

II. S U M M A R Y O F
D E V E L O P M E N T S I N
R E M O T E S E N S I N G
M O D E L S

According to the above-mentioned
discussion, Fig. 1 summarizes the
developments in the three main devel-
opment periods in remote sensing
models for information extraction
(advances in digital signal process-
ing, advances in physical models, and
deep learning for remotely sensed
data exploitation).

We have investigated the
publication trends in the most rep-
resentative remote sensing journals
in order to further analyze the
consolidation of models in the most
representative development areas,
specifically Remote Sensing of Environ-
ment and the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING

(called the IEEE TRANSACTIONS

ON GEOSCIENCE ELECTRONICS from
1963 to 1979). Due to the limited
number of articles before the 1980s,
we aggregated the publications
at yearly intervals. According to
the above-mentioned description,
the proportion of articles using
statistical models, physical models,
and data models in the collected
journal articles has been calculated
for each year. The results of our survey
are summarized in Fig. 2.
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Fig. 2. Analysis of the percentage (left axis) and the number of articles (right axis) published since 1973 in two of the main remote sensing

journals: Remote Sensing of Environment and the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. Red, green, and blue lines: the percentage of

articles on statistical models, physical models, and data-driven models, respectively. Black line: the total number of articles published in the

three aforementioned categories (right axis).

Overall, Fig. 2 shows that the num-
ber of articles published in the areas
of remote sensing image processing
and applications is increasing through
time. The number of articles pub-
lished in recent years is about ten
times more than the number of arti-
cles published in the early 1970s. The
articles applying statistical models
occupied a large proportion for a long
time and consisted of more than 50%
of the articles until the mid-1990s.
However, the number of articles using
statistical models has been declining
since the end of the 1970s. The trend
of articles using the physical model
is almost completely opposite. After
the 1970s, the total number of articles
using physical models shows a steady
upward trend. Specifically, the propor-
tion of articles utilizing physical mod-
els increased significantly during the
mid-1980s to the end of the 1990s,
while the number of publications
based on statistical models shows the
highest decline rate. An intersection
of temporal trend lines of publications
using statistical and physical models
appears in the mid-1990s. This marks
an interesting shift from digital sig-
nal processing to quantitative remote
sensing. The main topics investigated
in the area of physical models include
atmospheric correction models, bidi-

rectional reflectance distribution func-
tion (BDRF)-based physical models,
and marine optical models. Research
on data-based models emerged in the
1990s and accounts for about 18% of
the articles in recent years. The major-
ity of the topics addressed include
artificial intelligence algorithms rep-
resented by deep learning. Further-
more, there is a clear upward trend in
the future.

According to our literature survey
in the aforementioned journals, we
can anticipate that the proportion
of articles on statistical models will
decline in the future, while the pro-
portion of articles on physical mod-
els will still take a large portion.
We can see in Fig. 2 that, from 2012,
the growth rate on the number of
articles on data model-based remote
sensing image analysis and appli-
cations both exceeded the growth
rate of the articles on physical mod-
els. It is expected that scientists
around the world will continue to
work on the physical mechanisms of
the electromagnetic spectrum, sur-
face, and atmosphere to promote the
progress of physical models in the
future. However, we also anticipate
that the development of data mod-
els will be significantly accelerated,
mainly because of the advances in

deep learning for big remotely sensed
data analysis, which are convenient
to satisfy the application requirements
of complex and diverse remote sens-
ing applications. Although the use of
data models can overcome the diffi-
culties faced by statistical and physical
models, these models cannot be used
(in our opinion) independently. Quite
opposite, it is important to combine
the advantages of these three types
of models to leverage their unique
capabilities in complex scenarios [89],
[90]. To support customized, differen-
tiated, fine quality services for various
applications, the boundaries of these
three models may become blurred in
the future, leading to full integration
of the well-differentiated remote sens-
ing models that we have observed in
the literature so far.

III. D I S C U S S I O N

Big data are different from traditional
data due to their particular char-
acteristics: volume, variety, velocity,
and veracity (4Vs). In the context of
information extraction from remote
sensing data, the challenges of these
characteristics are as follows.

1) Volume: Different sensors
around the world are collecting
enormous remote sensing data
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continuously every second.
Collecting, storing, reading, and
further analyzing such amount
of remote sensing data are
extremely hard.

2) Velocity: Due to a large amount
of data available, realizing fast
or near-real-time remote sensing
data processing and information
extraction in different applica-
tions is very challenging

3) Veracity: Although data models
developed from deep-learning
algorithms could significantly
enhance the model accuracy
compared to statistical/physical
models (with the increase of
the training data sets), the
remaining challenge is how to
learn and validate knowledge
derived from data models.

4) Variety: The complexity and
diversity of remote sensing sen-
sors, context, and applications
make it difficult to accurately
extract valuable information
from data.

In order to address the aforemen-
tioned challenges, several research
directions have been specifically sug-
gested [43]:

1) building object-oriented remote
sensing databases containing
detailed a priori knowledge;

2) developing deep-learning algo-
rithms able to adopt the charac-
teristics of remote sensing data;

3) implementing remote sensing
algorithms on big data process-
ing platforms.

IV. C O N C L U S I O N

This article reviewed and analyzed the
development of remote sensing mod-
els from the early 1970s until today,
with a focus on the current status and

future development on deep learning
for the analysis of remotely sensed
big data. Our literature survey con-
firms that there have been three main
development stages for remote sens-
ing models. Before the 1990s, remote
sensing information extraction mainly
adopted statistical models, and few
studies attempted to employ phys-
ical models. After the 1990s, both
statistical models and physical mod-
els attracted the attention of many
researchers and were significantly
investigated, while the development
of data-driven models was at the very
early stage. Recently, there has been
a significant decrease in the inves-
tigations focused on statistical mod-
els. Although physical models were
quite dominant in the remote sensing
field, data models are now develop-
ing rapidly, leading to the beginning
of a remotely sensed big data era
that is supported by the improve-
ment of Earth observation technol-
ogy and computing power as well
as on the great existing demand for
remote sensing applications. Specifi-
cally, the data model represented by
deep learning has become the most
prominent feature of remote sensing
information extraction in this era. The
following specific guidelines are pro-
vided as a result of our review work.

1) Deep-learning models are very
promising for remote sensing
data interpretation, but, cur-
rently, the available number
of training samples is limited.
In this regard, it is important
to create robust models able
to function with a very lim-
ited number of labeled samples.
In this way, it is possible to
reduce the cost associated with
the acquisition of new data sets

with larger amounts of labeled
data. This will allow to reduce
the training time and the number
of labeled samples needed to cre-
ate robust models.

2) Moreover, new big data process-
ing frameworks are required
as a natural solution for the
processing of a large amount
of remote sensing data. In this
regard, both high-performance
computing and high-throughput
computing alternatives should
be further explored, including
parallelization on GPUs and
distribution/parallelization on
clusters with cloud computing-
based solutions.

3) Last but not least, low- and
high-power consumption archi-
tectures also need to be used to
adapt current models to onboard
exploitation, performing a thor-
ough assessment regarding how
deep-learning models can be fur-
ther optimized. This can signif-
icantly relieve ground-segment
computation and communica-
tion in the data interpretation
tasks.
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