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Abstract— The classification of hyperspectral images (HSIs)
using convolutional neural networks (CNNs) has recently drawn
significant attention. However, it is important to address the
potential overfitting problems that CNN-based methods suf-
fer when dealing with HSIs. Unlike common natural images,
HSIs are essentially three-order tensors which contain two
spatial dimensions and one spectral dimension. As a result,
exploiting both spatial and spectral information is very impor-
tant for HSI classification. This paper proposes a new hand-
crafted feature extraction method, based on multiscale covariance
maps (MCMs), that is specifically aimed at improving the
classification of HSIs using CNNs. The proposed method has
the following distinctive advantages. First, with the use of
covariance maps, the spatial and spectral information of the
HSI can be jointly exploited. Each entry in the covariance
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map stands for the covariance between two different spectral
bands within a local spatial window, which can absorb and
integrate the two kinds of information (spatial and spectral) in a
natural way. Second, by means of our multiscale strategy, each
sample can be enhanced with spatial information from different
scales, increasing the information conveyed by training samples
significantly. To verify the effectiveness of our proposed method,
we conduct comprehensive experiments on three widely used
hyperspectral data sets, using a classical 2-D CNN (2DCNN)
model. Our experimental results demonstrate that the proposed
method can indeed increase the robustness of the CNN model.
Moreover, the proposed MCMs+2DCNN method exhibits better
classification performance than other CNN-based classification
strategies and several standard techniques for spectral-spatial
classification of HSIs.

Index Terms— Data augmentation, deep convolutional neural
networks (CNNs), hyperspectral image (HIS) classification,
multiscale covariance maps (MCMs).

I. INTRODUCTION

RECENTLY, convolutional neural network (CNN)-based
hyperspectral image (HSI) classification has become an

active topic in the hyperspectral community [1]–[6]. This is
mainly due to the fact that CNN models can achieve state-
of-the-art performance on many different computer vision
tasks [7] (e.g., image classification, object detection, and
semantic segmentation).

As it is well known, it is necessary to obtain adequate
training data for a CNN model to achieve powerful general-
ization and good classification performance [8]. However, HSI
data sets usually suffer from the limited availability of labeled
samples [1], [5], [9]. In general, the training sets available for
HSIs are much smaller than those available for other image
databases used in the computer vision community (e.g., Ima-
geNet [10] contains millions of samples for training). Under
this context, it is necessary to develop effective methods for
CNN-based classification that can alleviate the potential over-
fitting problems that these architectures exhibit when dealing
with HSI data [11]. Moreover, different from common natural
images, HSIs are essentially three-order tensors which contain
two spatial dimensions and one spectral dimension [12], [13].
It is important to integrate the spatial and spectral information
for HSI classification [14]–[16].

With the aforementioned ideas in mind, this paper pro-
poses a new hand-crafted feature extraction method based
on multiscale covariance maps (MCMs) for CNN-based HSI
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Fig. 1. Graphical illustration of the construction of a covariance map
for a center pixel, where L is the number of spectral bands. Cov denotes
the covariance operation. For two given vectors x = [x1, x2, · · · , xn ]T
and y = [y1, y2, . . . , yn ]T ∈ R

n , we have Cov(x, y) = 1
n−1

∑n
i=1 zi −

( 1
n−1

∑n
i=1 xi ) × ( 1

n−1

∑n
i=1 yi ), where zi = xi yi .

classification. The proposed method has the following two
distinctive characteristics. First, the covariance maps can fully
exploit the spatial–spectral information present in HSIs. Fig. 1
shows an illustrative diagram explaining the construction of
the covariance map (on one scale) for an HSI. As it can be
observed, each entry in the covariance map stands for the
covariance of two different spectral bands within a local spatial
window, which offers a natural way to simultaneously exploit
the spatial–spectral information in the HSI [17]. Second,
with our multiscale strategy, each sample can be enhanced
with the information coming from different scales, which
is a natural way to increase the information comprised by
training samples effectively. We also note that the size of the
extracted covariance map is only determined by the number of
spectral bands (see Fig. 1), which indicates that the covariance
maps coming from different scales share the same size and
can be used to train a CNN model uniformly without any
dimensionality or scale obstacles. The MCMs resulting from
this operation are then used in our context to train a classic
CNN model for HSI interpretation. A majority voting strategy
is adopted on the test stage to merge the label information
coming from different scales.

The remainder of this paper is organized as follows.
A review of related works is given in Section II. Section III
presents the proposed approach in detail, introducing our
MCM-based feature extraction method and the posterior
2-D CNN (2DCNN) data classification approach. Section IV
describes our experimental results on three benchmark HSI
data sets and conducts a comprehensive comparison with
several popular CNN-based classification methods and classic
spectral–spatial techniques for HSI classification. Some con-
clusions and hints at plausible future research lines are given
in Section V.

II. RELATED WORK

Over the past decades, many unsupervised and supervised
techniques have been proposed for HSI classification, includ-
ing traditional pixel-based classifiers such as clustering meth-
ods [18], logistic regression (LR) [19], [20], extreme learning
machines [21], support vector machines (SVMs) [22], and
sparse coding [23], [24]. Due to the complex characteristics of
HSIs (high dimensionality, presence of noise/data redundancy,

and intraclass/interclass variability), supervised techniques
usually achieve higher classification accuracy and thus have
gained significant attention (e.g., SVM). On the other hand,
the incorporation of spatial information is a very important
strategy for improving HSI classification performance. Tech-
niques for this purpose have addressed the intraclass variability
and the interclass data correlations [9], [16]. For instance,
Benediktsson et al. [14] introduced the extended morphologi-
cal profiles (EMPs), which consist of the sequential application
of opening and closing operations and thus provide an effective
way to characterize the multiscale variability of spatial struc-
tures in the HSI. Inspired by the success of the EMP, a con-
siderable number of related methods have been developed for
spectral–spatial classification of HSIs [15], [25]–[27]. To fur-
ther accelerate the speed of processing and reducing the
storage space for HSI classification, a series of parallel and
distributed approaches has been proposed in [28], [29].

Recently, deep learning methods have shown great potential
in the field of remote sensing image classification [30], [31],
as compared to traditional neural network-based classification
methods such as the multilayer perceptron (MLP) [7]. The
main idea behind deep learning methods is to extract abstract
semantic features from the original data using a hierarchi-
cal representation architecture. Chen et al. [32] use stacked
autoencoders (SAEs) to extract high-level features for HSI
classification with a greedy layerwise pretraining strategy.
In [33], deep-belief networks (DBNs) are also introduced
for feature extraction and classification of HSIs. In [34],
diversity-promoting priors are introduced into the pretraining
(unsupervised) and fine-tuning (supervised) of the DBN to
enhance classification performance. In [35], the recurrent
neural network is first applied for HSI classification. However,
most of these models [32], [33] need to flatten HSI patches in
one dimension to satisfy their input requirements and may not
effectively utilize the spatial information [2]. A good attempt
to overcome this limitation is the work in [36], in which
Ma et al. implemented a spatially updated deep autoencoder
that jointly exploits spectral and spatial features, replacing
each feature with the weighted average computed from the
surrounding samples.

As a typical deep model, CNNs have also been extended
for HSI classification purposes [2], [37]. Compared to SAEs,
CNNs [38] allow using hyperspectral patches as the input,
providing a natural way to incorporate the spatial-contextual
information through their local receptive fields to enhance
classification performance. Several CNN-based models have
been proposed for HSI classification using spatial features.
Mei et al. [39] present a CNN in which spectral signatures
and spatial context are integrated by a preprocessing strategy
that accounts for neighboring pixels, taking into account three
types of feature vectors per pixel: the hyperspectral pixel,
the mean of neighboring pixels, and the mean and standard
deviation per spectral band of neighboring pixels. In [5],
a deeper CNN model with shortcut connections is proposed to
perform end-to-end classification. To further utilize the spatial
information effectively, a diverse region-based CNN model is
proposed in [3]. Zheng et al. [40] applied principal component
analysis (PCA) [41] to extract the spectral features from HSIs,
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Fig. 2. Graphical illustration of the proposed approach for feature extraction
considering a pixel x1 in an HSI.

and then, fed these features to a 2DCNN (i.e., spatial) to
conduct an end-to-end classification.

A similar approach for feature extraction was followed by
Liang and Li [42], in which neighborhood areas are first
extracted from the resulting bands after applying a PCA
transformation on the original HSI, and then, fed to a 2DCNN
for feature extraction. Finally, sparse coding is applied to the
resulting features for classification purposes. Another example
is the work in [43], in which Zhao and Du combine the
CNN-based spatial feature extraction with balanced local dis-
criminant embedding-based spectral feature extraction, stack-
ing the obtained features and then feeding them to an
LR or SVM classifier. Yang et al. [44] and Zhang et al. [45]
separately apply a 1-D CNN (1DCNN) to extract hierarchi-
cal spectral features and a 2DCNN to extract hierarchical
space-related features. Then, they used a softmax regression
classifier to obtain the final classification results. In addition,
Romero et al. designed an unsupervised CNN model for
unsupervised sparse features learning in [46]. To alleviate
the problem of overfitting [8], a pixel-pairs-based data aug-
mentation method has been recently proposed where new
samples are constructed by pairing the labeled training pix-
els [1], with which the amount of input data used for training
purposes increases quadratically. In [47], a convolutional–
deconvolutional network is proposed for unsupervised fea-
ture learning and HSI classification. In [48], a band-adaptive
spectral–spatial net is proposed for simultaneous dimensional-
ity reduction and discriminative spectral–spatial feature extrac-
tion. All of these methods have been shown to achieve
encouraging classification performance.

III. PROPOSED METHOD

The proposed method consists of two main steps. First,
we conduct dimensionality reduction on the original HSI using
the maximum noise fraction (MNF) fraction. Then, we con-
struct MCMs for feature extraction purposes. Fig. 2 provides
a graphical illustration of the proposed approach, in which
we can see how the MNF is first applied to the original HSI
for dimensionality reduction. Then, a series of progressively
larger subcubes is constructed by considering increasingly
larger spatial neighborhoods around each pixel (in the figure,
we consider a given pixel x1 as the center pixel), leading to
the construction of MCMs (capturing multiple scales) for each
pixel that are then used as features for classification purposes.

In the following, we describe in more detail that the two main
steps of the proposed approach.

A. Dimensionality Reduction
First, in order to reduce the noise and computational com-

plexity, the MNF method [49], [50] is applied to the original
HSI. Specifically, given an HSI defined by Z ∈ R

I×J×K ,
a reduced image X ∈ R

I×J×L can be obtained by means of
the MNF approach, where I and J denote the size of the two
spatial dimensions, K is the size of the spectral dimension,
and L represents the number of MNF principal components.
The components produced by the MNF transformation are
ordered in terms of signal-to-noise ratio (SNR), with the first
components retaining the maximum information in terms of
SNR. In this paper, we fix L to 20, since we have empirically
found that the most useful information of the considered
HSI data sets can be comprised by the first 20 principal
components.

B. Feature Extraction via Multiscale Covariance Maps

For each pixel, a series of progressively larger cubes is
constructed by considering increasingly larger spatial neigh-
borhoods around the original pixel. For each of these cubes,
a covariance matrix is further calculated to represent the
information contained in the central pixel, which is enhanced
by considering progressively larger neighborhoods. As a result,
a series of covariance maps obtained from different spatial
scales and called MCMs is used to represent the information
comprised by the central pixel, which can be then used to
train the classifier more effectively. Specifically, for the central
pixel x1, the covariance map of x1 on one scale T × T is
extracted as follows:

C = 1

T 2 − 1

T 2∑

i=1

(xi − µ)(xi − µ)T ∈ R
L×L (1)

where µ denotes the mean of the set of feature vectors
{xi }i=1,...,T and the {xi }i=2,...,T 2 denote the corresponding
neighboring pixels within a window of T ×T pixels. Moreover,
M scales Tk , k = 1 . . . M are taken into account. Thus,
M covariance maps are extracted with (1) to represent the
center pixel x1, denoted by Ck , k = 1 . . . M , respectively.
In this paper, the value of M is set to 15, which will be further
discussed in the experimental results section.

The proposed MCMs method has the following distinctive
advantages. First, with the use of covariance maps, the spa-
tial and spectral information are simultaneously exploited.
Each entry in the covariance map represents the covariance
between two different spectral bands within a local spatial
window, which can naturally integrate the spatial and spectral
information. Second, with the proposed multiscale strategy,
each sample can be enhanced using spatial information from
different scales, thus increasing the information comprised
by the samples effectively. Note that the covariance maps
from different scales share the same size, which allows us
to train a uniform CNN model without any dimensional-
ity or scale obstacles. This is an important property of the
proposed approach. To sum up, the proposed strategy based on
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Fig. 3. Proposed 2DCNN architecture model. The input multiscale covariance block of each pixel is fed to the network, map by map, through two convolutional
layers with ReLU activation function, followed by a max-pooling layer. The output of the 2DCNN is flattened and fed to three fully connected MLP layers
that perform the final classification.

MCMs can naturally integrate the spatial–spectral information
contained in the HSI.

IV. EXPERIMENTAL RESULTS

This section is organized as follows. In Section IV-A,
we describe the neural network classifier that we have used
in this paper to perform classification based on the extracted
MCMs features. We note that the proposed feature extraction
approach can be combined with other classifiers, as will be
shown in experiments reported in this section, but we have
specifically selected a 2DCNN classifier due to the fact that
the proposed MCMs approach is specifically designed to
increase the robustness of CNN models. In Section IV-B,
we describe our experimental configuration. Section IV-C
describes the considered hyperspectral data sets. Finally,
Section IV-D describes a series of experiments designed in
order to validate the performance of the proposed approach
and to compare it with other state-of-the-art techniques for
HSI classification.

A. 2-D Convolutional Neural Network
Used for Classification

The architecture of the 2DCNN that we use for classifi-
cation purposes is described in Fig. 3 and Table I. Specif-
ically, the 2DCNN contains two convolutional layers and
three fully connected layers. Each convolutional layer is fol-
lowed by max-pooling layers. In addition, the rectified linear
unit (ReLU) activation function is adopted. The minibatch gra-
dient descent has been selected as the optimizer, whose goal is
to minimize the cross-entropy reached by the 2DCNN. As each
pixel xi in the HSI X has M associated matrices B20×20,
the 2DCNN model will perform M classifications for xi on
the test phase. The final label is obtained via majority voting
from these M classification results. Note that the 2DCNN
model is implemented using the TensorFlow open source
library.1

1https://www.tensorflow.org

TABLE I

PARAMETERS USED WHEN DESIGNING THE TOPOLOGY OF THE PROPOSED

2DCNN ARCHITECTURE FOR ALL THE HSIS CONSIDERED IN

EXPERIMENTS. THE KERNEL SIZES REPRESENT DESIGN
CHOICES FOR THE PROPOSED DEEP ARCHITECTURE.

NONE OF THE LAYERS USE PADDING

B. Experimental Configuration
Our experiments have been conducted on a hardware

environment composed by a sixth Generation Intel Core
i7-6700K processor with 8 M of Cache and up to 4.20 GHz
(4 cores/8 way multitask processing), 40 GB of DDR4 RAM
with a serial speed of 2400 MHz, a graphic processing
unit (GPU) NVIDIA GeForce GTX 1080 with 8 GB GDDR5X
of video memory and 10 Gb/s of memory frequency, a Toshiba
DT01ACA HDD with 7200 rpm and 2 TB of capacity, and
an ASUS Z170 progamming motherboard. On the other hand,
the software environment is composed of Ubuntu 16.04.4 × 64
as operating system, TensorFlow 1.3.0 and compute device
unified architecture 8 for GPU functionality. The so-called
Xavier [51] is used for initialization of all weights, while the
bias is initialized with zeros. The Adagrad optimizer [52] is
adopted for training. The learning rate is set to 0.001 and
remains unchanged during the whole procedure. The batch
size is set to 100, and the weight decay is set to 0.0005 for
L2 regularization. The above configuration has been used for
all the experiments conducted with different HSIs. We do not
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TABLE II

NUMBER OF SAMPLES OF THE THREE TEST HSIS

split any validation set from the training set or test set for
hyperparameters selection.

C. Hyperspectral Data Sets
Our experiments have been carried out using three different

and well-known hyperspectral data sets, described as follows.
1) AVIRIS Indian Pines: This scene (see Table II) covers

an agricultural site in Northwestern Indiana and was
collected by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor [53] in 1992. The data set is
of size 145 ×145 ×220, with spatial resolution of 20 m
per pixel and spectral range from 0.2 to 2.4 microns.
Before classification, 20 spectral bands (i.e., 104th–
108th, 150th–163rd, and 220th) are discarded due to low
SNR. This image contains 16 land-cover classes.

2) ROSIS Pavia University: This scene (see Table II)
was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) [54] sensor over the campus of
the University of Pavia, Italy. This data set contains

103 spectral bands after the noise-corrupted bands are
discarded, while the scene contains 610 × 340 pixels.
The spatial resolution of this data set is 1.3 m, and the
spectral coverage ranges from 0.43 to 0.86 microns. The
ground-truth is composed by nine land-cover classes
in total, covering an urban area with solid structures
(asphalt, gravel, metal sheets, bitumen, bricks), natural
objects (trees, meadows, soil), and shadows.

3) AVIRIS Salinas: This scene (see Table II) was also col-
lected by the AVIRIS sensor over the Salinas Valley, CA.
The data set is of size 512 × 217 × 224, and it has
spatial resolution of 3.7 m per pixel with 16 land-cover
classes. Before classification, 20 bands were removed
(i.e., 108th–112th, 154th–167th, and 224th).

D. Experiments
1) Experiment 1: In our first experiment, we compare

the proposed approach (hereinafter, MCMs+2DCNN) with a
traditional approach for dimensionality reduction followed by
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TABLE III

CLASSIFICATION RESULTS (IN PERCENTAGE) OBTAINED BY THE MNF+SVM, THE STANDARD 2DCNN, AND THE PROPOSED MCMS+2DCNN
METHODS FOR THE AVIRIS INDIAN PINES SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

classification (MNF+SVM) that is widely used for hyperspec-
tral data interpretation. It should be noted that, in our method,
the MNF is also used as preprocessing. As a result, we adopt
it for dimensionality reduction prior to the application of the
standard SVM classifier for a fair comparison. In all cases,
the first 20 MNF components are selected for classification
purposes.

Table III shows the classification results obtained by the
aforementioned methods using 1%, 2%, 3%, 5%, 10%,
and 15% randomly selected samples for each land-cover type
in the AVIRIS Indian Pines data set. Each experiment has
been repeated 10 times, and the average results (together
with the standard deviation) are reported. As it can be seen
from Table III, the proposed approach (MCMs+2DCNN)
exhibits obvious improvements according to different clas-
sification metrics, such as the overall accuracy (OA), aver-
age accuracy (AA), and Kappa statistic, when compared
to the MNF+SVM approach. For example, when only 2%
training samples are selected per class, the OA, AA, and
Kappa of the MNF+SVM approach are 76.38%, 71.29%,
and 72.83%, respectively, while the results obtained by
our MCMs+2DCNN approach are 90.35%, 90.86%, and
89.01%, respectively. This means that the average improve-
ment observed in the three quantitative metrics is over 10%.

Similar results can also be observed for the other two tested
data sets, which are, respectively, shown in Tables IV (ROSIS
Pavia University) and V (AVIRIS Salinas). The main reason
is that the MNF+SVM method only considers the spectral
information, while the proposed approach integrates both the
spatial and the spectral information contained in the scene.
Note that the running time of MNF+SVM is omitted because
it is implemented in the central processing unit while our
method is implemented on a GPU.

2) Experiment 2: In this experiment, we provide a com-
prehensive comparison between the 2DCNN trained with
and without MCMs. Specifically, the 2DCNN models trained
without MCMs take patches from the original hyperspectral
scenes as the input data, i.e., the networks are fed with a
neighborhood window centered around each pixel in the scene.
In this way, the input layer accepts volumes of size d ×d ×n,
where d is the width and height of the input volume and
n is the number of components extracted from MNF. This
requires a preprocessing stage in order to: 1) reduce the
spectral dimensionality with the MNF method and 2) divide
the reduced HSI into patches of size d ×d ×n, being d an odd
number because the desired label to be reached by the network
will be the one that owns the central position of the pixel in the
patch of size [d/2+1, d/2+1, n]. In our case, d has been fixed
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TABLE IV

CLASSIFICATION RESULTS (IN PERCENTAGE) OBTAINED BY THE MNF+SVM, THE STANDARD 2DCNN, AND THE PROPOSED MCMS+2DCNN
FOR THE ROSIS PAVIA UNIVERSITY SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

to 21 (a number that is close to the MCMs+2DCNN input
volume with L = 20) and n has been set to 1, so the 2DCNN
input data uses patches of size 21 × 21. Also, following
the strategy in [55], a border mirroring strategy has been
implemented in order to take into account the pixels at the
border of the HSI.

Tables III–V (already discussed in Experiment 1) show the
corresponding results comparison between the 2DCNN trained
with and without MCMs using various numbers of samples
selected per class, ranging from 1% to 15%. From Table III,
we can observe that the proposed method achieves signifi-
cantly better OAs than the classical 2DCNN on the Indian
Pines data set. This is mainly due to the fact that, with MCMs,
the 2DCNN model can be trained sufficiently, integrating
spatial–spectral information from different scales, thus leading
to satisfactory classification results. Also, it should be noted
that the proposed MCMs+2DCNN exhibits similar execution
time than the classical 2DCNN. At first sight, we suppose
that classical 2DCNN should be faster than MCMs+2DCNN,
because the classical 2DCNN is trained with n pixels (this
number is calculated according to the considered training per-
centage), while the MCMs+2DCNN is trained with M covari-
ance matrices per pixel, so in the end, the MCMs+2DCNN
is trained with n × M samples, which should make it slower.
However, the runtime is eventually very similar because the
MCMs+2DCNN needs less epochs than 2DCNN to converge,
although its epochs are slower than those of the 2DCNN due to
the amount of data involved, as we can observe in Fig. 4, where
the test accuracy evolution is displayed across the epochs.
Fig. 5 illustrates the aforementioned results in a graphical
way. Specifically, the figure displays the classification maps
obtained by the 2DCNN trained without MCMs (center) and
the classification maps obtained by the 2DCNN trained with

MCMs (right). In both cases, 10% of the available samples
have been randomly selected from each class to train both
networks. As it can be seen, the map obtained by 2DCNN
trained with MCMs exhibits a very clean result, with less
misclassifications at the borders of the classes than the one
obtained by the 2DCNN trained without MCMs.

A similar situation can be observed in Tables IV and V
for the ROSIS Pavia University and the AVIRIS Salinas
scene, respectively. As it can be seen, although the proposed
MCMs+2DCNN method is slightly slower than the classical
2DCNN, it reaches better OA values. Figs. 6 and 7 present
the corresponding classification maps obtained by the 2DCNN
model, trained with and without MCMs and using 10% of the
available training samples per class on these two data sets.
As it can also be observed, the 2DCNN trained with the MCMs
obtains a classification map that is more similar to the ground
truth on both data sets.

In addition, Fig. 4 shows the convergence of the test classi-
fication performance for the 2DCNN and the MCMs+2DCNN
on the three considered data sets (i.e., Indian Pines, Pavia
University and Salinas). As it can be observed from Fig. 4,
the proposed MCMs+2DCNN method converges to satis-
factory classification performance after the first few epochs.
In contrast, without MCMs, the 2DCNN needs more epochs
to reach acceptable results and still has the risk of divergence,
even after 50 epochs. Note that, in this experiment, 10% of
the available samples per class are randomly selected to train
the CNN model.

The above-mentioned experiments demonstrate that the pro-
posed method can indeed alleviate the problem of overfitting
and thus improve the robustnesses of the CNN model for HSI
classification purposes. This also reveals that the main benefits
of the proposed method are twofold. First, with the use of
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TABLE V

CLASSIFICATION RESULTS (IN PERCENTAGE) OBTAINED BY THE MNF+SVM, THE STANDARD 2DCNN, AND THE PROPOSED
MCMS+2DCNN FOR THE AVIRIS SALINAS SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE

covariance matrices, the spatial and spectral information are
jointly integrated in a natural way. Second, with the adopted
multiscale strategy, training samples can be enhanced with
abundant spatial–spectral information to train the CNN model
more effectively.

3) Experiment 3: In our third experiment, we compared
the proposed model with another method, i.e., the pixel-
pairs model [1]. In this paper, Li et al. proposed a deep
CNN architecture which is employed to learn deep pixel-pair
features (PPFs). Specifically, on the training stage, the input
data of the PPF+2DCNN method is composed by pairs of
samples Si j = [xi , x j ], where xi ∈ R

d×1 and x j ∈ R
d×1 are

the two samples from the training set of hyperspectral scene X
with d spectral bands, and categorized with yi ∈ {1, 2, . . . , C}
and y j ∈ {1, 2, . . . , C}, where yi and y j are the labels and
C is the number of different classes. Each pair Si j is labeled
as follows:

LabelSi j =
{

l if yi = y j = l

0 if yi �= y j .
(2)

As a result, the method creates nnew
l = (((nl)!)/((nl − 2)!))

samples for each class, where nl is the number of available
labeled training samples in the lth class. The final number of
samples is Nnew = ∑C+1

l=1 nnew
l , which is much larger than

original number of samples. Then, the new pixel-pairs are fed

to a deep 2DCNN (with six convolutional layers and three
fully connected layers) for training. On the test stage, they
construct the pixel pairs within a local window for each test
sample, and the final classification result is also obtained by
majority voting. Moreover, the results of a classical 1DCNN
classification method [56], which is composed by one convo-
lution layer and two fully connected layers, are also reported
here for comparison.

Tables VI–VIII show the classification results obtained
for the three considered scenes by the 1DCNN in [56],
the PPF+2DCNN in [1], and the proposed MCMs+2DCNN
method, trained with 200 randomly selected samples per class.
In Table VI, we can see the obtained classification accuracies
for the AVIRIS Indian Pines scene, where the OA achieved
by the MCMs+2DCNN is better than the OA achieved by
the 1DCNN and PPF+2DCNN models. For instance, the OA
achieved by the proposed method is 99.10%, while the OA
obtained by the PPF is 94.34%. The improvement in clas-
sification accuracy is more than 4.5%. Similar results can
be observed in Tables VII (ROSIS Pavia University scene)
and VIII (AVIRIS Salinas scene). This is mainly due to the
fact that MCMs can take into account the spatial–spectral
information contained in the HSI for classification purposes,
while the PPF only takes the spectral information into con-
sideration. As such, the proposed MCMs method can gain
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Fig. 4. Curve of accuracy for the 2DCNN (blue) and the proposed
2DCNN+MCMs (orange) using 10% randomly selected training samples for
the classification of (a) Indian Pines data set, (b) Pavia University data set,
and (c) Salinas data set. As it can be seen, the proposed MCMs+2DCNN can
obtain high and stable test accuracy with less epochs, while without MCMs,
the 2DCNN needs more epochs to converge.

Fig. 5. Classification maps obtained for the AVIRIS Indian Pines scene with
10% randomly selected training samples per class. (Left) Original ground
truth. (Center) Classical 2DCNN model. (Right) Proposed MCMs+2DCNN
model.

higher classification accuracy. The above experiments demon-
strate that the proposed method is an effective strategy when
compared to another established approach such as the PPF.

4) Experiment 4: In this experiment, we compared
the proposed method with another classical CNN-based

Fig. 6. Classification maps obtained for the ROSIS Pavia University scene
with 10% randomly selected training samples per class. (Left) Original ground
truth. (Center) Classical 2DCNN model. (Right) Proposed MCMs+2DCNN
model.

Fig. 7. Classification maps obtained for the AVIRIS Salinas scene with 10%
randomly selected training samples per class. (Left) Original ground truth.
(Center) Classical 2DCNN model. (Right) Proposed MCMs+2DCNN model.

TABLE VI

COMPARISON BETWEEN THE 1DCNN IN [56], THE PPF+2DCNN IN [1],
AND THE PROPOSED MCMS+2DCNN USING THE AVIRIS INDIAN

PINES SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TYPEFACE. SYMBOL “*” MEANS THAT THE RESULTS

ARE DIRECTLY OBTAINED FROM THIS PAPER

classification method [2]. Specifically, in [2], the 1DCNN and
2DCNN are used as a feature extraction method followed by
the LR classifier. Tables IX and X show the classification
results obtained by the 1DCNN and 2DCNN in [2] and our
method with the Indian Pines and Pavia University data sets,
respectively. As it can be seen from Tables IX and X, the pro-
posed method can obtain better classification performance
on both Indian Pines and Pavia University data sets. This
is mainly due to the fact that, with the proposed method,
the information coming from training samples can be enhanced
significantly, which is helpful to train the CNN model more
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TABLE VII

COMPARISON BETWEEN THE 1DCNN IN [56], THE PPF+2DCNN
IN [1], AND THE PROPOSED MCMS+2DCNN, USING THE

ROSIS PAVIA UNIVERSITY SCENE. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD TYPEFACE. SYMBOL “*”
MEAN THAT THE RESULTS ARE DIRECTLY

OBTAINED FROM THIS PAPER

TABLE VIII

COMPARISON BETWEEN THE 1DCNN IN [56], THE PPF+2DCNN IN [1],
AND THE PROPOSED MCMS+2DCNN, USING THE AVIRIS SALINAS

SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD
TYPEFACE. SYMBOL “*” MEANS THAT THE

RESULTS ARE DIRECTLY OBTAINED

FROM THIS PAPER

effectively. Also, the proposed method can converge faster
than the other methods, using less epochs and, therefore, less
computation time.

5) Experiment 5: To further evaluate the effectiveness of the
proposed MCMs+2DCNN, the classification results obtained
by combining MCMs with several classical classifiers (i.e., K
nearest neighbors (KNN), RF, and SVMs trained with radial
basis function (RBF) kernel) are reported in this experi-
ment. Tables XI–XIII show the corresponding classification
results comparison on the tested HSI data sets. In addition,
to make a more comprehensive comparison, the classification
results obtained by combining original spectral features with
the KNN, RF, and SVM classifiers are also reported. From
Tables XI–XIII, we highlight the following observations. First,
MCMs can improve the classification performance of the
different classifiers by a large margin, which demonstrates
that the proposed method is an effective spatial–spectral
feature extraction method for HSIs. Second, the proposed
MCMs+2DCNN can outperform the combination of MCMs
with other classifiers, which suggests the effectiveness of the
MCMs+2DCNN classification framework. Note that, for the
KNN, parameter K is set to 1 with the Euclidean distance
metric. For the RF, the number of trees is set to 200, which

TABLE IX

CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT CNNS ON
THE INDIAN PINES DATA SET. SYMBOL “*” MEANS THAT THE

RESULTS ARE DIRECTLY OBTAINED FROM THIS PAPER

TABLE X

CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT CNNS ON
THE PAVIA UNIVERSITY DATA SET. SYMBOL “*” MEANS THAT

THE RESULTS ARE DIRECTLY OBTAINED FROM THIS PAPER

follows the settings in [35]. Five-fold cross-validation is
adopted to determine the parameters of the SVM classifier.

6) Experiment 6: In this experiment, we compare the
proposed MCMs+2DCNN method with several popular
spectral–spatial classification methods such as EMPs [14],
extended morphological attribute profiles (EMAPs) [15], edge-
preserving filter (EPF) [16], multiscale adaptive sparse rep-
resentation (MASR) [9], and the CNN-based classification
method in [5]. The corresponding classification results are
reported in Tables XIV and XV. As it can be seen, the pro-
posed MCMs+2DCNN is superior to other spatial–spectral
methods.

7) Experiment 7: In this experiment, we evaluate the effect
of the number of scales on the proposed MCMs+2DCNN.
As Fig. 8 shows, there are consistent improvements in terms of
OA, AA, and Kappa as the number of scales increases, but the
number of scales should be less than 15. The best classification
accuracy is achieved when 15 scales are used. In addition,
growing further the number of scales (e.g., to 17) does not
improve the classification accuracy. As a result, the number
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TABLE XI

CLASSIFICATION RESULTS (IN PERCENTAGE) OBTAINED BY DIFFERENT CLASSIFIERS WITH THE ORIGINAL SPECTRAL FEATURES AND MCMS
FOR THE AVIRIS INDIAN PINES SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE. 10% OF THE

AVAILABLE SAMPLES PER CLASS ARE RANDOMLY SELECTED FOR TRAINING

TABLE XII

CLASSIFICATION RESULTS (IN PERCENTAGE) OBTAINED BY DIFFERENT CLASSIFIERS WITH THE ORIGINAL SPECTRAL FEATURES AND MCMS

FOR THE AVIRIS PAVIA PINES SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE. 10% SAMPLES

ARE RANDOMLY SELECTED FOR TRAINING

TABLE XIII

CLASSIFICATION RESULTS (IN PERCENTAGE) OBTAINED BY DIFFERENT CLASSIFIERS WITH THE ORIGINAL SPECTRAL FEATURES AND

MCMS FOR THE AVIRIS SALINAS SCENE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE.
10% SAMPLES ARE RANDOMLY SELECTED FOR TRAINING

of scales in our experiments is set to 15. This is mainly due
to the fact that, within a certain range, more scales indicate
that more samples with additional spatial–spectral information

are utilized for the CNN training and thus lead to better
classification accuracy. On the other hand, increasing too much
the number of scales may not be beneficial to classification.
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TABLE XIV

CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT CLASSIFICATION METHODS OVER PAVIA DATA SET. 200 SAMPLES PER
CLASS ARE SELECTED FOR TRAINING. WITH/WITHOUT SYMBOL “*” MEANS THAT THE RESULTS

ARE DIRECTLY OBTAINED FROM THIS PAPER OR OBTAINED BY OURSELVES

TABLE XV

CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT CLASSIFICATION METHODS OVER SALINAS DATA SET. 200 SAMPLES
PER CLASS ARE SELECTED FOR TRAINING. WITH/WITHOUT SYMBOL “*” MEANS THAT THE RESULTS

ARE DIRECTLY OBTAINED FROM THIS PAPER OR OBTAINED BY OURSELVES

Fig. 8. Effect of the number of scales on the proposed MCMs+2DCNN
method. 10% samples are randomly selected per class for training. The average
values of 10 experiments are reported, and only the AVIRIS Indian Pines scene
is used for illustrative purposes (the results with other scenes are similar).

Note that only the Indian Pines data set is used in this exper-
iment with 10% training samples randomly selected per class
for illustrative purposes. The results obtained with other scenes
are similar and not displayed here for space considerations.

8) Experiment 8: Finally, in this experiment, we report
the processing time of the proposed MCMs method when
applied to the three considered data sets. As mentioned before,
the MCMs method consists of two steps (i.e., MNF-based
dimensionality reduction and MCMs calculation). The running

TABLE XVI

IMPLEMENTATION TIME (SECONDS) OF THE PROPOSED MCMS

METHOD WHEN APPLIED TO THE THREE CONSIDERED DATA
SETS. THE MCMS METHOD CONSISTS OF TWO STEPS

(I.E., MNF-BASED DIMENSIONALITY REDUCTION

AND MCMS CALCULATION). THE RUNNING
TIME OF EACH STEP AND THE TOTAL

TIME ARE REPORTED

time of each step and the total processing time are reported
in Table XVI. We note that this implementation time can be
further reduced via parallel computing, which will be explored
in our future developments.

V. CONCLUSION

In this paper, we propose a novel hand-crafted feature
extraction method for the classification of HSIs using CNNs.
With our newly developed model, we not only increase the
amount of information conveyed by training samples but
also naturally integrate the spectral and the spatial-contextual
information contained in the original scene, which are both
highly beneficial to train a CNN model with powerful gen-
eration ability for HSI classification. Experiments on three
widely used HSIs indicate that the proposed method provides
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classification results that are superior to those obtained by
several classical CNN-based and spectral–spatial classification
methods. In the future works, we will combine the MCMs
with superpixel segmentation approaches in order to explore
in more detail the spatial information contained in the original
hyperspectral data.
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