IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

9499

Portability Study of an OpenCL Algorithm
for Automatic Target Detection in
Hyperspectral Images

Sergio Bernabé™, Carlos Garcia, Francisco D. Igual, Guillermo Botella,

Manuel Prieto-Matias, and Antonio Plaza

Abstract—1In the last decades, the problem of target detection
has received considerable attention in remote sensing applica-
tions. When this problem is tackled using hyperspectral images
with hundreds of bands, the use of high-performance comput-
ing (HPC) is essential. One of the most popular algorithms in the
hyperspectral image analysis community for this purpose is the
automatic target detection and classification algorithm (ATDCA).
Previous research has already investigated the mapping of
ATDCA on HPC platforms such as multicore processors, graphics
processing units (GPUs), and field-programmable gate arrays
(FPGAs), showing impressive speedup factors (after careful fine-
tuning) that allow for its exploitation in time-critical scenarios.
However, the lack of standardization resulted in most implemen-
tations being too specific to a given architecture, eliminating (or at
least making extremely difficult) code reusability across different
platforms. In order to address this issue, we present a portability
study of an implementation of ATDCA developed using the
open computing language (OpenCL). We focus on cross-platform
parameters such as performance, energy consumption, and code
design complexity, as compared to previously developed (hand-
tuned) implementations. Our portability study analyzes different
strategies to expose data parallelism as well as enable the efficient
exploitation of complex memory hierarchies in heterogeneous
devices. We also conduct an assessment of energy consumption
and discuss metrics to analyze the quality of our code. The con-
ducted experiments—using synthetic and real hyperspectral data
sets collected by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) and NASA’s Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS)—demonstrate, for the first time
in the literature, that portability across different HPC platforms
can be achieved for real-time target detection in hyperspectral
missions.

Index Terms— Automatic target detection and classification
algorithm (ATDCA), code quality, energy consumption, high-
performance computing (HPC), hyperspectral imaging, open
computing language (OpenCL), portability.

Manuscript received December 10, 2018; revised May 13, 2019; accepted
June 18, 2019. Date of publication August 1, 2019; date of current version
October 31, 2019. This work was supported in part by EU (FEDER) and
in part by the Spanish MINECO under Grant TIN2015-65277-R, Grant
TIN2015-63646-C5-5-R, and Grant RTI2018-093684-B-100. (Corresponding
author: Sergio Bernabé.)

S. Bernabé, C. Garcia, F. D. Igual, G. Botella, and M. Prieto-Matias are
with the Department of Computer Architecture and Automation, Complutense
University of Madrid, 28040 Madrid, Spain (e-mail: sebernab@ucm.es).

A. Plaza is with the Hyperspectral Computing Laboratory, Department of
Technology of Computers and Communications, University of Extremadura,
10003 Ciceres, Spain.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2019.2927077

, Fellow, IEEE

I. INTRODUCTION

IGH-performance computing (HPC) has been used to
map hyperspectral image analysis algorithms on many
remote sensing applications [1], including environmental mod-
eling, biological threat detection, monitoring of oil spills,
target detection for military and defense/security purposes,
wildfire tracking, and so on. This solution is needed because
hyperspectral images are composed of hundreds or even thou-
sands of spectral bands (at different wavelength channels), and
there are important computational requirements to manage,
process, and even store these high-dimensional data. One of
the most popular imaging spectrometers currently in opera-
tion is the Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS), managed by NASA’s Jet Propulsion Laboratory in
California, which is able to record the visible and near-infrared
spectrum (wavelength region from 0.4 to 2.5 um) of reflected
light in an area of 2 to 12 km wide and several kilometers long,
using 224 spectral bands. The resulting multidimensional data
cube typically comprises several gigabytes per flight.
Previous research studies [2] have shown that the ever-
growing computational demands of these applications, which
often require real- or near real-time responses, can fully ben-
efit from emerging HPC computing platforms. Unfortunately,
programming heterogeneous HPC systems is a laborious task
that often involves a deep knowledge of the underlying archi-
tecture, as well as different programming languages. In fact,
programmers are usually forced to concentrate on implemen-
tation details and learning new application interfaces (APIs)
rather than on other important issues related to the application.
Furthermore, the lack of standardization in the first generation
products from International Business Machines Corporation
(IBM) [Cell Broadband Engine (Cell BE) Architecture] or
NVIDIA resulted in most applications being too specific to
a given architecture, eliminating (or at least making extremely
difficult) the possibility of reusing code across different
platforms. Many proprietary standards and tools have been
designed in order to cover a closed set of architectures. In turn,
the open computing language (OpenCL) has become a free
standard for parallel programming of heterogeneous systems.
The development of OpenCL was driven by the need to
improve portability [3]-[5]. OpenCL is an open and royalty-
free standard based on C99 for parallel programming on
heterogeneous systems. Its first specification was released in

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9916-0634
https://orcid.org/0000-0002-9613-1659

9500

late 2008. Since then, it has been adopted by many vendors
for all sorts of computing devices, from dense multicore
systems to new accelerators such as graphics processing units
(GPUs), digital signal processors (DSPs), field-programmable
gate arrays (FPGAs), the Intel Xeon-Phi, and other custom
devices. The main advantage of using OpenCL is the shorter
time to develop fast implementations. However, OpenCL
makes no guarantee of performance portability. Code porta-
bility is important for application and library developers, but
performance portability is what really matters to application
users. Our focus in this paper is on analyzing and studying
this emerging problem for the first time in the remote sensing
literature, using as a benchmark the automatic target detection
and classification algorithm (ATDCA) [6], a well-known algo-
rithm that has been widely used for the detection of (moving
or static) targets in remotely sensed hyperspectral images.

Previous research has already investigated the mapping of
ATDCA on HPC architectures, such as multi-core proces-
sors [7], GPUs [8], and FPGAs [9]. In these studies, differ-
ent implementations of the algorithm have been considered,
including a version using an orthogonal projection operator
[orthogonal subspace projections (OSP)] and another version
using the Gram—Schmidt (GS) method for orthogonalization,
showing impressive speedup factors that allow the exploitation
of the algorithm in time-critical scenarios. Based on these
previous studies, this paper explores the portability of a novel
OpenCL implementation across a range of processing devices,
namely, multicore processors, GPUs, and accelerators. This
approach clearly differs from previous works, focused on
achieving the optimal performance on each platform. Here,
we are more interested in the following issues: 1) to evaluate
if a single code written in OpenCL allows us to achieve
acceptable performance across all of the available platforms;
2) to assess the gap between our portable OpenCL code
and the previously investigated hand-tuned versions; 3) to
measure the energy consumption for each platform; and 4) to
develop metrics able to evaluate the code quality. In addi-
tion, our study also includes the analysis of different tuning
techniques that expose data parallelism using open multi-
processing (OpenMP) and compute unified device architecture
(CUDA), to enable an efficient exploitation of the complex
memory hierarchies found in these heterogeneous devices.

Our experimental results, conducted using synthetic and real
hyperspectral data sets collected by the Hyperspectral Dig-
ital Imagery Collection Experiment (HYDICE) and NASA’s
AVIRIS sensor, demonstrate the importance of performance,
power consumption, and code quality parameters. In our
opinion, the analysis presented here is highly innovative and
quite important in order to really calibrate the possibility of
using heterogeneous HPC platforms for efficient hyperspectral
image processing in real remote sensing missions.

The main contribution of this paper is the development
of a new portable OpenCL implementation of the ATDCA
algorithm for hyperspectral target detection, and its detailed
cross-portability evaluation based on different parameters such
as performance, power consumption, and code quality. To the
best of authors’ knowledge, this kind of study has not
been previously conducted on a real application. This work

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

extends previous results in [10], which were mainly focused
on performance portability. Here, we extend the previous
preliminary work along the following main lines.

1) Our new portable OpenCL version has been substantially
improved. Among the new improvements, we provide
optimal data distribution capability depending on the
considered platform (SoA-based on pixel arrangements
and AoS-based on spectral band arrangements), the use
of padding to improve the performance with respect
to the previous work and restrict to allow pointer
disambiguation.

2) A previously available OpenMP hand-tuned version has
also been improved considering a data distribution strat-
egy based on the spectral bands arrangement, allowing
for optimal memory transfers by means of memory
alignment. This strategy also increases the efficiency of
data loads and stores to and from the processor in archi-
tectures such as the Intel Xeon Phi platform. Moreover,
this version guarantees cache coherence through data
structures depending on the size of the cache memory.

3) Our performance study has been significantly extended,
using a large synthetic image. In this study, we have
enabled autovectorization flags, where the Intel com-
piler identifies and optimizes code portions, with-
out requiring any special action by the programmer.
This approach, together with the new data distribution
strategy, improves the performance on most platforms
studied.

4) Our power consumption study has been configured using
a pmlib client/server infrastructure [11] by instrument-
ing the code using its API for energy consumption
analysis of heterogeneous platforms.

5) Last but not least, a code quality study has been included
to analyze our OpenCL portable code as compared to
some previously available hand-tuned versions, using a
newly developed metric.

The remainder of this paper is organized as follows.
Section II describes our optimized ATDCA method. Section II1
describes the considered parallel implementations (CUDA,
OpenMP, and OpenCL). Section IV presents an experimental
evaluation of the considered implementations in terms of
accuracy, parallel performance, power consumption, and code
quality, using synthetic and real data sets, on heterogeneous
HPC platforms. Finally, Section V concludes this paper with
some remarks and hints at plausible future research lines.

II. CASE STUDY: ATDCA-GS METHOD

The ATDCA is a popular algorithm in many remote sensing
applications [2]. It was originally developed in [12] to find
distinct targets using orthogonal subspace projections (OSP).
This method has been modified in the last years [8], [13], [14].
In this work, we use an optimization of this algorithm
(see [8]), which allows calculating orthogonal projections
without requiring the computation of the inverse of the matrix
that contains the targets already identified in the image. This
optimization is based on the GS method for orthogonalization.

In this work, we have focused on the ATDCA-GS algorithm
because this algorithm can obtain real-time performance using

BERNABE et al.: PORTABILITY STUDY OF AN OpenCL ALGORITHM FOR AUTOMATIC TARGET DETECTION IN HYPERSPECTRAL IMAGES

HPC platforms and even improving the accuracy compared to
another ATDCA-based algorithms such as ATDCA-OSP [12].
In addition, ATDCA-GS is a simple algorithm but, at the same
time, highly robust, with operations not very expensive in
computational terms, i.e., the matrix inversion was removed
and replaced by using the Gram—Smith method to obtain the
orthogonal projections if we compare it with the ATDCA-
OSP. The pseudocode of the ATDCA-GS algorithm is given
in Algorithm 1.

Algorithm 1 Pseudocode of ATDCA-GS
1: INPUTS: X € R” and 1;
% X denotes an n-dimensional hyperspectral image with
ny pixels and ¢ denotes the number of targets to be detected
2M=1[x0]|0],...,]|0]; % whose size is t
% X is the pixel vector with maximum length in X
3:B=1[0]0],...,]01]; % whose size is t — 1
% B is an auxiliary matrix for storing the orthogonal base
generated by the GS process
4:fori=1tot—1do
5: Bl i]=M[,i];
% the i-th column of B is initialized with the target
computed in the last iteration (here, the operator *“:*
denotes “all elements”)
Py =11,...,1];
for j=2toi do

) . ML,i] "B, j—1 . .
projur.j—n (ML, i1) = grbAeP S IeBL, j — 1;

B[, i] =B, i] - projpi..;-n (ML, il);

% The i-th column of B is updated

10: end for j
% The computation of B is finished for the current
iteration of the main loop

11: fork=1toi do

. TB[:
120 projerxW) = grteeg Bl kL

13 Pyp = Py — projiki(w):
14: end for k
% The computation of Pﬁ is finished for the current
iteration of the main loop
150 v = PﬁF;
% X is projected onto the direction indicated by Pﬁ
16: [=argmaxy _, V[, il
% The maximum projection value is found
172 x, =M[:,i + 1] = X[, i];
% The target matrix is updated
18: end for
19: OUTPUT: M = [x0, X1, ..., X/—1];
% M denotes the matrix with all the spectral signatures for
each target

R A

IIT. PARALLEL IMPLEMENTATIONS

In this section, we describe our parallel versions of
the ATDCA-GS algorithm for a diverse set of heteroge-
neous platforms. The OpenMP and CUDA implementations
are first presented. Section III-B describes our portable
OpenCL implementation that represents the main focus of this
study.

9501

A. OpenMP Implementation

By observing the program flow in Algorithm 1 [10],
it is possible to identify the potential bottlenecks in the
ATDCA-GS algorithm. The most important one is the pro-
jection of the orthogonal vector onto each pixel spectrum on
the image, where a reduction process is included. We have
identified such bottleneck by profiling an optimized (serial)
ATDCA-GS implementation.

First, the hyperspectral image X is mapped onto RAM
memory. In this case, the best data distribution is based on the
spectral bands arrangement, where each spectral band vector
with size ny is distributed (by columns) in X, allowing optimal
memory transfers to create data objects with starting addresses
that are modulo 64 bytes. As we will see later, this scheme
does not offer the best performance rates on GPU devices.

After that, it is needed to calculate the brightest pixel spectra
xo in X. This pixel is the initial target signature whose pixel
vector contains the pixel with maximum projection value in
the original n-dimensional hyperspectral image. In this step,
the algorithm computes a dot product between each pixel
vector and its own transposed version. The parallel algorithm
has been rewritten in order to avoid the use of locking routines
(omp_set_lock) and (omp_unset_lock), as shown in lines
11-14 of Algorithm 2. Note that we have also solved the false
sharing overhead by means of padding technique.

Algorithm 2 OpenMP Brightest_Pixel_Spectra Calculation

1: global h_image <« Initial X vector [r]
max_localseMAX_THREADS*CACHE_LINE] <« 0,
pos_abs_localsyMAX_THREADS*CACHE_LINE] < 0
% MAX_THREADS denotes the maximum number to
execute the code
% CACHE_LINE denotes the maximum size for each
cache line to guarantee cache coherence

2: registers max_local «<— 0, value <— 0, value_out <— 0
3: #pragma omp parallel for private(value, value_out, j)
4: for iter=0 to r do
5. th < omp_get_thread_num()
6: value < 0, value_out <— 0
7. for j =0 to np do
8: value <~ h_image[j + (iter * n, PADDING)]
9: value_out < value * value
end for

—_ =
—_ o

if value_out > max_locals[th*CACHE_LINE] then
12: max_locals[th*CACHE_LINE] <« value_out

13: pos_abs_locals[th*CACHE_LINE] <« iter

14: end if

15: end for

16: for iter =0 to MAX_THREADS do

17: if max_locals[iter*CACHE_LINE] > max_local then
18: max_local < max_locals[iter*CACHE_LINE]
19: pos_abs <« pos_abs_locals[iter*CACHE_LINE]
20: end if

21: end for

Once the brightest pixel in X has been identified, its spectral
signature is allocated as the first column in matrix M. In order

9502

Algorithm 3 OpenMP Pixel_Projection Calculation

1: global h_image <« Initial X vector [r]

2: global h_f «<- The most orthogonal vector

3: global max_localsyMAX_THREADS*
CACHE_LINE_FLOAT] « 0,
pos_abs_localsf MAX_THREADS*CACHE_LINE_INT]
~ 0

4: registers max_local <— 0, value <— 0, value_out < 0

: #pragma omp parallel for private(value, value_out, j)

schedule(guided)

6: for iter=0 to r do

7. th <— omp_get_thread_num()

8

9

(9,1

value <— 0, value_out < 0
for j=0 to n; do

10: value < value + h_image[j + (iter * n, PADDING)]

* h_f[j]

11: end for

12: value_out <— value * value

13: if value_out > max_locals[th*CACHE_LINE_FLOAT]
then

14: max_locals[th*CACHE_LINE_FLOAT] < value_out

15: pos_abs_locals[th*CACHE_LINE_INT] <« iter

16: end if

17: end for

18: for iter =0 to MAX_THREADS do

19: if max_locals[iter*CACHE_LINE_FLOAT] >
max_local then

20: max_local <~ max_locals[iter*CACHE_LINE_FLOAT]
21: pos_abs <— pos_abs_locals[iter*CACHE_LINE_INT]
22: end if

23: end for

to calculate the orthogonal vectors through the GS method,
serial version is used. It permits to operate on small data
structures and obtain the results very quickly. Then, a parallel
function is created to project the orthogonal vector onto each
pixel of the image and obtain the maximum of all projected
pixels. The function is outlined in Algorithm 3, where we have
used the same strategy as in Algorithm 2. The considered data
distribution mechanism and the strategy adopted to solve the
false sharing problem improve significantly the performance
with respect to the previous research [10], since now we ensure
cache coherence through data structures depending on the
size of the cache memory, increasing the efficiency of our
application.

Algorithm 1 now extends the target matrix as M = [Xox1]
and repeats the same process until the desired number
of targets (specified by the input parameter f) has been
detected. The output of the algorithm 1 is a set of targets
M = [x0, X1, ..., X—1].

B. CUDA Implementation

Our parallel implementation of ATDCA-GS in CUDA is
based on the strategy described in [10], but using the version
9.0 of CUDA. Three different kernels have been developed to
calculate the brightest pixel (see Algorithm 4), pixel projection
(see Algorithm 5) and a reduction process to obtain the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

maximum projection (see Algorithm 6). The main novelty of
this implementation respect to [10] is the efficient exploitation
of memory adding memory padding and two data distributions
(see Lines 7 and 19 on Algorithms 4 and 5, respectively),
where the best distribution is based on the number of pixels
arrangement, in which each pixel vector is distributed by
columns in X.

Algorithm 4 CUDA Brightest_Pixel_Spectra Kernel
1: global d_image <« Initial X vector [r]

2: global d_bright <— The bright value for each pixel spectral

x; in X

3: registers bright <— 0, value <— 0

:1id <= blockDim.x * blockIdx.x + threadldx.x
% np denotes the number of spectral bands

5: if id < r then

6: fork =0 ton, do

7: value < d_image[id + (k * n, PADDING)]

8

9

IS

bright <— bright + value * value
. end for
10: d_bright[id] < bright
11: end if

Algorithm 5 CUDA Pixel_Projection Kernel

1: global d_image < Initial X vector [r]

2: global d_projection <— The projection value for each pixel
spectral x; in F

: global d_f <— The most orthogonal vector

: registers sum <« 0, value <— 0

: shared s_df[np] < Initial d_f structure with the most
orthogonal vector

A NEON)

wn

6: idx < blocDim.x * blockIdx.x + threadldx.x
7. if id < r then

8: if threadldx.x < np then

9: for i = threadldx.x to n; do

10: s_df[i] < d_f[i]

11: end for

12: else

13: if threadldx.x < n; then

14: s_df[threadldx.x] < d_f[threadIdx.x]
15: end if

16: end if

17: __syncthreads()

% In this synchronize, all threads must wait the execution
of all threads in a block to complete the copy of d_f

18: fori=0 to np do

19: value < d_image[idx + (i * n, PADDING)]

20: sum < sum -+ value * s_dffi]

21: end for

22: d_projection[idx] <— sum * sum

23: end if

C. OpenCL Implementation

Our portable implementation in OpenCL has several differ-
ences with the implementation in [10]. Before analyzing them,
we briefly describe the OpenCL framework.

BERNABE et al.: PORTABILITY STUDY OF AN OpenCL ALGORITHM FOR AUTOMATIC TARGET DETECTION IN HYPERSPECTRAL IMAGES

Algorithm 6 CUDA Reduction_Projection Kernel

1: global d_bright <~ The bright value for each pixel spectral
in X

2: global d_projection <— The projection value for each pixel
spectral x; in F

3: global d_index < The index for each projection value

: local s_p <« Initial structure to store all the projections

: local s_i < Initial structure to store all the index for each

projection

6: tid <— threadldx.x

7: i < blockldx.x * (blockDim.x * 2) + tid

8

9

[

. if (i+blockDim.x) > r then
s_p[tid] <« d_bright[i]
10: s_iftid] <« 1
11: else
12: if d_bright[i] > d_bright[i + blockDim.x] then
13: s_p[tid] <« d_bright[i]
14: s_i[tid] < i
15: else
16: s_pltid] < d_bright[i + blockDim.x]
17: s_i[tid] < 1 + blockDim.x
18: end if
19: end if
20: __syncthreads()
% In this synchronization, all threads must wait for the
execution of all threads in a block to complete the copy in
the local memory of s_p and s_i
21: for s=blockDim.x / 2 to s>0 do
22: if tid < s then
23: if s_p[tid] < s_p[tid + s] then

24: s_pltid] < s_p[tid + s]
25: s_i[tid] <« s_i[tid + s]
26: end if

27: end if

28: __syncthreads()

29: end for

30: d_projection[blockldx.x] <— s_p[0]
31: d_index[blockldx.x] <— s_i[0]
32: __syncthreads()

1) OpenCL Framework: The OpenCL
developed to allow freedom in terms of implementing
applications that may be run on many add-ons that are
vendor-specific, cross vendor, and Khronos.! In the OpenCL
paradigm, “host program” is in charge of I/O operations, data
initialization, and “device” control. It launches the “kernel”
codes and synchronizes them. Among the main benefits, there
are the wide range of hardware devices such as CPUs, GPUs,
and FPGAs that could be used easily with a moderate coding
effort.

An OpenCL kernel allows to express parallelism by means
of the execution of several work-items. A group of work-
items forms a work-group that runs on a single compute unit.
The work-items execute the same kernel (with a unique id),
share a fast memory denoted as local memory, and can be
synchronized with barriers. The maximum dimension of each

specification was

1 https://www.khronos.org/opencl

9503

work-group depends on the specifications of the device in use
(see Section 1V).

2) Implementation Details: In our implementation, the use
of padding, restrict, and two data distributions is tested.
Although the kernels are written in a similar way as in
CUDA implementations, the data arrangement in memory is
different. The best performance rates observed correspond to
the data distribution based on the spectral bands arrange-
ment. We would like to note that this scheme offers better
performance on Xeon platforms because it favors the use of
native OpenCL vectorization. However, this memory access
pattern is not optimal on GPUs since it is performed in a
noncoalesced way. In addition, we have focuses on efficient
memory exploitation since the algorithm is memory-bound.
According to the number of memory access, its arithmetic
intensity is about 1. Memory optimization has been performed
(especially on Algorithm 8) by means of data reuse in the local
memory and applying blocking techniques.

The differences with respect to the implementation in [10]
are highlighted in Algorithms 7 (brightest pixel) and 8
(pixel projection). The reduction kernel is not shown because
we have used the same scheme as in CUDA described in
Algorithm 6. It should be noted that it was not possible to
perform any task parallelism because the algorithm exhibits
data dependencies the stages mentioned.

Algorithm 7 OpenCL Brightest_Pixel_Spectra Kernel

1: global restrict d_image <— Initial X vector [r]

2: global restrict d_bright <— The bright value for each pixel
spectral x; in X
% restrict avoids that the pointers do not point to overlap-
ping locations.

3: registers bright <— 0, value <— 0

4:1d <« get_group_id(0) *
get_local_id(0)
% np denotes the number of spectral bands

5. if id < r then

6: for k =0 to np do

7: value < d_image[k + (id * np PADDING)]

8

9

get_local_size(0) +

bright <— bright + value * value
: end for
10: d_bright[id] < bright
11: end if

IV. EXPERIMENTAL RESULTS

This section is organized as follows. Section IV-A provides
the work environment used in our experiments. Section IV-B
describes the hyperspectral data sets used in this study.
Section IV-C evaluates the target detection accuracy of
the considered implementations. Finally, Sections IV-D-IV-F,
respectively, discuss the performance, power consumption, and
code quality evaluations.

A. Considered Work Environment

The experiments have been carried out in three different
types of systems. The first two are HPC heterogeneous systems
with the same host and different accelerator/coprocessors,

9504

Algorithm 8 OpenCL Pixel_Projection Kernel

1: global restrict d_image <— Initial X vector [r]

2: global restrict d_projection <— The projection value for
each pixel spectral x; in X

3: global restrict d_f <— The most orthogonal vector

: registers sum <« 0, value <— 0

: local s_df[np] < Initial d_f structure with the most
orthogonal vector

6: id < get_global_id(0)

7: if id < r then

8

9

[T N

if get_local_size(0) < np then
for i = get_local_id(0) to n;, do

-
SER:

s_df[i] < d_fTi]
11: end for
12: else
13: if get_local_id(0) < nj then
14: s_df[get_local_id(0)] <— d_f[get_local_id(0)]
15: end if
16: end if

17: barrier(CLK_LOCAL_MEM_FENCE)
% Wait until the copy in local memory of d_f is
completed

18: for i =0 to np do

19: value <— d_image[i + (id * n, PADDING)]

20: sum < sum + value * s_dffi]

21: end for

22: d_projection[id] <— sum * sum

23: end if

while the last one is a low-power environment. Their main
features are described in the following items.

1) The host of the two HPC heterogeneous systems consists
of two Intel Xeon E5-2695 processors with 14 cores
each at 2.30 GHz and 64 GB of DDR3 RAM memory.
Two types of accelerators have been considered as
follows.

a) An NVIDIA GeForce GTX 1080 GPU with
2560 cores operating at 1772 MHz and 8 GB of
dedicated GDDR5X memory.

b) A Xeon-Phi 31S1P coprocessor with 57 cores
supporting the execution of four hardware threads
(228 hardware threads in total) operating at
1100 MHz and 8-GB RAM memory.

2) An additional low-power platform is used in our exper-
iments, with the following main features.

a) ODROID-XU3 platform equipped with Samsung
Exynos5422 Cortex-A15 2.0-GHz quad-core and
Cortex-A7 quad-core CPUs and Mali-T628 MP6
GPU and 2-GB LPDDR3 RAM memory operating
at 933 MHz.

B. Real and Synthetic Data Sets
We have considered three hyperspectral data sets in our
experiments.

1) The first one is a scene collected by the HYDICE
sensor [see Fig. 1(a)], which represents a subset of

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

(b)

Fig. 1. (a) False color representation of the HYDICE hyperspectral scene.
(b) Associated ground-truth information.

Reflectance

1000 200 2600

40 TOO 1000 1300 1600
Wavelength (nm)

(b)

Fig. 2. (a) False color composition of an AVIRIS hyperspectral image
collected over the Cuprite mining district in Nevada. (b) USGS mineral
spectral signatures used for validation purposes.

the well-known forest radiance data set, consisting
of 64 x64 pixels with 15 panels and 169 spectral bands,
for a total size of 5.28 MB. Moreover, a ground-truth
map is available for the scene, indicating the spatial
location of the panels [see Fig. 1(b)]. This image was
acquired with 210 spectral bands and a spectral coverage
from 0.4 to 2.5 xm. Bands 1-3, 101-112, 137-153 and
202-210 were removed prior to the analysis due to water
absorption and low signal-to-noise ratio (SNR) in those
bands. The spatial resolution of the scene is 1.56 m. The
scene is extensively described in [15].

2) The second hyperspectral image scene is the well-known
AVIRIS Cuprite scene [see Fig. 2(a)], collected by
the NASA/JPL AVIRIS spectrometer in the summer
of 1997. It is available online in reflectance units after
atmospheric correction and comprises a relatively large
area (350 lines by 350 samples and 20-m pixels) and
224 spectral bands between 0.4 to 2.5 um, with a
total size of around 46 MB. Bands 1-3, 105-115, and
150-170 were removed prior to the analysis due to water
absorption and low SNR in these bands. The site is
well understood mineralogically and has several exposed
mineral of interest including alunite, buddingtonite, cal-
cite, kaolinite, and muscovite. The ATDCA-GS algo-
rithm has been assessed in this work using the reference
ground signatures of the above-mentioned minerals, dis-
played in Fig. 2(b), which are available from the United
States Geological Survey (USGS) library.?

2United States Geological Survey (USGS) library: http://speclab.cr.usgs.gov/
spectral-lib.html

BERNABE et al.: PORTABILITY STUDY OF AN OpenCL ALGORITHM FOR AUTOMATIC TARGET DETECTION IN HYPERSPECTRAL IMAGES

Fig. 3. (a) Color-scale composition and three examples of ground-
truth abundance maps of endmembers (pure spectral signatures) in the
synthetic hyperspectral data. (b) Endmember #3. (c) Endmember #I5.
(d) Endmember #26.

3) We also considered a bigger synthetic data set in order
to evaluate the scalability of our implementations. The
data have been constructed using a set of 30 sig-
natures from the USGS library and the procedure
described in [16] to simulate natural spatial patterns.
The resulting synthetic image is composed by a total of
750 x 650 pixels, resulting in a size of around 437 MB.
Fig. 3 displays a color-scale composition and three
examples of ground-truth abundance maps (built from
pure spectral signatures or endmembers) for this simu-
lated image.

C. Accuracy Evaluation

It is important to emphasize that our parallel implementa-
tions of the ATDCA-GS provide exactly the same numerical
results as their respective sequential implementations. In order
to analyze the accuracy of the general ATDCA-GS algorithm,
the well-known spectral angle distance (SAD) [15] is adopted
in this work. For this purpose, we have chosen the AVIRIS
Cuprite scene, which is highly used for evaluation purposes
due to the availability of reference spectral signatures [see
Fig. 2(b)]. The number of targets to be extracted was esti-
mated as ¢+ = 19 after the consensus between two well-
known techniques for this purpose: the virtual dimensionality
(VD) [17] and the hyperspectral signal identification with
minimum error (HySime) algorithm [18]. The SAD was
calculated between the extracted targets and the ground-truth
USGS spectral signatures. The range of values for the spectral
angle is in the range [0°, 90°] (the lower the SAD value,
the higher the spectral similarity). As shown in Table I,
the endmembers extracted by the ATDCA-GS exhibit low
SAD scores and are spectrally very similar to the USGS
reference signatures, despite the potential variations (due to
possible interference still remaining after the atmospheric
correction process) between the ground signatures and the
airborne data. These results indicate that good detection per-
formance for all considered targets is achieved by ATDCA-GS.

9505

TABLE I

SPECTRAL ANGLE VALUES (IN DEGREES) BETWEEN THE TARGET
PIXELS EXTRACTED BY THE ATDCA-GS ALGORITHM AND THE
REFERENCE USGS MINERAL SIGNATURES AVAILABLE
FOR THE AVIRIS CUPRITE SCENE

Alunite
5.448° |

Buddingtonit
4.08

[Calcite [Kaolinite [Muscovite | Average
[587° | 1L1&° | 568° | 645

D. Performance Evaluation

In this section, we conduct an evaluation of the computa-
tional performance of our portable OpenCL implementation in
several heterogeneous platforms. Our developed codes have
been compiled using the Intel ICC compiler v18.0 on the
Intel Xeon host and GNU-GCC compiler v4.9 on the Odroid-
XU3, with the enabled flags -O3 -restrict that activate single
instruction multiple data (SIMD) exploitation.

Tables II-IV show the obtained times after processing the
simulated and real data sets on the considered platforms,
depending on the work-group size and two considered data
distributions: SoA (structure of arrays) and AoS (array of
structures). For the sake of clarity, the best times achieved in
each configuration are highlighted in bold. The speedups are
calculated using as baseline the best time obtained in the serial
implementation on a single Xeon CPU. In this work, the stor-
age resources are not a bottleneck and, as a result, we have
focused on the use of different devices applied to different
image sizes. As it can be observed, the SoA distribution is
the most effective strategy on the GPU, XeonPhi, and Odroid
platforms, where the optimal work-group size is close to the
number of physical cores present on each device. In contrast,
the AoS distribution behaves as an efficient alternative on
general-purpose processors based on Xeon. Furthermore, it is
also remarkable the scalability of our parallel implementations,
as the speedups increase with the image size, achieving up to
11x speedup on the GPU device due to the efficient use of
different computing capacities for each device (except for the
Odroid platform, where the largest image does not fit in RAM
memory).

In order to highlight the use of using OpenCL and
the involved overheads, Figs. 4-6 show a breakdown of the
measured execution times for each hyperspectral data set. The
tag RAM->Device represents the overhead of transferring
the image between the main memory of the host and the
device. Serial code includes the code executed on sequential
way: input/output (I0) operations and kernel launch overheads.
Read_Write accounts the data transfer overheads between the
host and device memory. The rest of the subbars show the
execution times of each stage of ATDCA. It is important to
note that the bar denoted as Another P.P.L. means the total time
achieved by means of a native hand-tuned coding version in
each device (OpenMP or CUDA).

With regards to Fig. 4, the most successful threads con-
figuration considered for OpenMP and CUDA is 8 on
Xeon CPU, 1024 on GPU, 4 on Xeon Phi, and 4 on
the Odroid. Since this scene can be regarded as a small
one, our OpenCL version achieves low-performance ratios
with respect to the hand-tuned counterpart. This is expected,

9506

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

TABLE II

PROCESSING TIMES (IN SECONDS) OBTAINED BY THE PROPOSED OPENCL IMPLEMENTATION OF ALGORITHM 1
IN DIFFERENT PLATFORMS, TESTED WITH THE HYDICE DATA SET

HYDICE
Work-Groupsize-4 | Work-Groupize-16 | Work-Groupize—64 | Work-Groupsize-2s6 | Work-Groupsize-1024
Serial_SoA 0.0223 0.0223 0.0223 0.0223 0.0223
Serial_AoS 0.0017 0.0017 0.0017 0.0017 0.0017
Xeon_SoA 0.0092 0.0077 0.0078 0.0099 0.0152
Xeon_AoS 0.0148 0.0111 0.0113 0.0113 0.0122
Speedup_Xeon - 0.22x - - -
GPU_SoA 0.0067 0.0054 0.0059 0.0058 0.0033
GPU_Ao0S 0.0047 0.0036 0.0037 0.0039 0.0037
Speedup_GPU - - - - 0.52x
XeonPhi_SoA 0.0297 0.0197 0.0179 0.0170 0.0209
XeonPhi_AoS 0.0224 0.0204 0.0179 0.0175 0.0292
Speedup_XeonPhi - - - 0.10x -
Odroid_SoA 0.0305 0.0305 0.0303 0.0300 -
Odroid_AoS 0.0343 0.0349 0.0349 0.0350
Speedup_Odroid - - - 0.06x -
TABLE III

PROCESSING TIMES (IN SECONDS) OBTAINED BY THE PROPOSED OPENCL IMPLEMENTATION OF ALGORITHM 1
IN DIFFERENT PLATFORMS, TESTED WITH THE AVIRIS CUPRITE DATA SET

AVIRIS Cuprite
Work-Groupgize=4 | Work-Groupgize-16 | WOrk-Groupgize-¢4 | Work-Groupgize-2s6 | Work-Groupgize-1024
Serial_SoA 2.0301 2.0301 2.0301 2.0301 2.0301
Serial_AoS 0.2665 0.2665 0.2665 0.2665 0.2665
Xeon_SoA 0.0692 0.0837 0.0788 0.0820 0.0829
Xeon_AoS 0.0592 0.0594 0.0661 0.0773 0.0832
Speedup_Xeon 4.50x - - - -
GPU_SoA 0.0511 0.0400 0.0352 0.0340 0.0339
GPU_Ao0S 0.0487 0.0508 0.1245 0.1401 0.1101
Speedup_GPU - - - - 7.86x
XeonPhi_SoA 0.1570 0.0767 0.0759 0.0738 0.0764
XeonPhi_AoS 0.1212 0.0944 0.0998 0.1062 0.1175
Speedup_XeonPhi - - - 3.61x -
Odroid_SoA 1.0668 1.0653 1.0495 0.9642 -
Odroid_AoS 1.9586 1.9702 1.9825 1.4608 -
Speedup_Odroid - - - 0.28x -
TABLE IV

PROCESSING TIMES (IN SECONDS) OBTAINED BY THE PROPOSED OPENCL IMPLEMENTATION OF ALGORITHM 1
IN DIFFERENT PLATFORMS, TESTED WITH THE SYNTHETIC DATA SET

Synthetic
Work-Groupsize-4 | Work-Groupize-16 | Work-Groupize=64 | Work-Groupsize-2s6 | Work-Groupsize-1024
Serial_SoA 16.2014 16.2014 16.2014 16.2014 16.2014
Serial_AoS 1.7274 1.7274 1.7274 1.7274 1.7274
Xeon_SoA 0.3912 0.4234 0.4157 0.4196 0.4431
Xeon_AoS 0.3056 0.3872 0.3848 0.3869 0.4030
Speedup_Xeon 5.65x - - - -
GPU_SoA 0.2792 0.1942 0.1642 0.1611 0.1536
GPU_Ao0S 0.2607 0.2892 0.8276 0.8837 1.1769
Speedup_GPU - - - - 11.25x
XeonPhi_SoA 2.3167 0.5882 0.5855 0.5947 0.6442
XeonPhi_AoS 0.8736 0.7195 0.7102 0.7185 0.8065
Speedup_XeonPhi - - 2.95x - -
Odroid_SoA NA NA NA NA NA
Odroid_AoS NA NA NA NA NA
Speedup_Odroid - - - - -

due to the small degree of fine-grained parallelism avail-
able, which does not compensate the kernel launch over-
heads. In this particular case, a hand-tuned version is much
faster.

In Fig. 5, the most successful threads configurations for
OpenMP and CUDA are, respectively, 24 on Xeon CPU,
1024 on the GPU, 40 on Xeon Phi, and 12 on the Odroid. This
image is considered as a medium-sized one. In this scenario,

BERNABE et al.: PORTABILITY STUDY OF AN OpenCL ALGORITHM FOR AUTOMATIC TARGET DETECTION IN HYPERSPECTRAL IMAGES

Performance Results - HYDICE scene

B Another P.P.L.

W Read_Write

Time (seconds)

& Reductions

M Projections

i Brightest_pixel

= Serial code

B RAM->Device

<P.P.L.> Platform

Fig. 4. Breakdown of the execution time considering all the parallel
programming languages and platforms available (HYDICE data set).

Performance Results - AVIRIS Cuprite scene

1,0000
0,9000
0,8000
0,7000
I
T 0,6000
] B Another PP.L.
¢ 0,5000 A
= M Read_Write
o 0,4000
£ & Reductions
= 0,3000
M Projections
0,2000
0,1000 L Brightest_pixel
0'0000 M Serial code
B RAM->Device
C
&
<
N &
& S
i R
<P.P.L.> Platform
Fig. 5. Breakdown of the execution time considering all the parallel

programming languages and platforms available (AVIRIS Cuprite data set).

our portable OpenCL code achieves performance ratios that
are close to those exhibited by the hand-tuned versions in all
considered cases, except on the Xeon Phi platform.

Finally, in Fig. 6, the most successful threads configurations
are 28 on the Xeon CPU, 1024 on the GPU, and 57 on the
Xeon Phi. Results in Odroid are not available since the scene
cannot be allocated in the available memory of this device. Due
to the fact that the size of this image is huge, the hand-tuned
versions exhibit the best performance ratios. As in the previous
analysis, our portable OpenCL version is able to attain similar
performance than the one achieved by the hand-tuned counter-
parts on each platform. Thus, we conclude that the OpenCL
implementation not only favors code reusability on different
devices but can also achieve similar performance when com-
pared to the hand-tuned versions on the considered devices.

Last but not least, we emphasize that our proposed portable
version meets real-time requirements, i.e., it can process the
considered scenes in less than 0.066 s (HYDICE), 1.986 s
(AVIRIS), and 7.903 s (synthetic), taking as reference the
cross-track line scan time in HYDICE and AVIRIS, which

9507

Performance Results - Synthetic scene

3,0000
2,5000
— 2,0000
@
°
H ® Another P.P.L.
21,5000 ;
@ H Read_Write
3
E 1,0000 i Reductions
M Projections
0,5000 i Brightest_pixel
H Serial code
0,0000 = RAM->Device
S & &
* >) QO O S
& N &® & Q] -
¥ ¥ & & <
A A A
z‘\c o@ J 7(9 N <7 &
~ & 4 N & QS S
o QO Qé‘ o> & S
iy Y S
<P.P.L.> Platform
Fig. 6. Breakdown of the execution time considering all the parallel

programming languages and platforms available (synthetic data set).

are push-broom instruments able to collect at least 512 full
pixel vectors in 8.3 ms.

E. Energy Consumption Evaluation

In this section, we perform a detailed empirical study of
the energy efficiency of our implementations in each consid-
ered architecture. We leverage the pmlib [11] client/server
infrastructure as a common mechanism to measure energy
consumption by instrumenting the code using its API. In all
cases, the measured code in terms of energy matches that
temporized in Section IV-D targeting performance.

In our case, the pmlib server has been adapted to gather
power consumption from a specific mechanism depending on
the target architecture given as follows.

1) Intel Xeon CPU: For this architecture, we use measure-
ments offered by the Intel Running Average Power Limit
(RAPL) infrastructure.

2) Intel Xeon Phi: We use the MicMgmt API offered by
Intel.

3) Nvidia GPU: We use the Nvidia NVML library.

4) Odroid XU3: We gather instantaneous power consump-
tion ratios from the internal sensors (Texas Instruments
INA231) equipped in the board.

In all cases, we have measured instantaneous power con-
sumption at the maximum rate allowed by the underlying
mechanism, gathering an average value at the end of the
execution.

Table V reports the obtained results on the target platforms.
These results include total consumed energy (in terms of
joules), average power dissipation (in terms of watts), and
energy efficiency (in terms of Mpixels/watt). Comparing archi-
tectures, it is clear that the ODROID board is the most energy-
efficient one for this family of implementations. Specifically,
the use of OpenMP to leverage the CPU cores yields the most
efficient implementations, followed by the GPU (OpenCL)
implementation. Note, however, that this energy efficiency

9508

TABLE V

COMPARATIVE STUDY OF ENERGY CONSUMPTION AND PERFORMANCE
BETWEEN DIFFERENT PLATFORMS AND THE BEST SETTING FOR EACH
PARALLEL PROGRAMMING LANGUAGE

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

TABLE VI
CODE QUALITY EVALUATION

Halstead metrics OpenMP OpenCL CUDA
Operators count (N7) 4,076.00 6,257.00 4,361.00
Platforms PPL. Data Set Time J Watt Mpixels/Watt Distinct operators (121) 48.00 64.00 49.00
Hydice 0.0077 1.50 194.44 0.0026 Operands count (N2) 2,177.00 3,416.00 2,230.00
OpenCL | Cuprite | 0.0592 | 11.58 | 195.53 0.0101 Distinct operands (n2) 257.00 429.00 335.00
Xeon Synthetic | 03056 | 61.08 | 199.88 0.0076 Program length (L) 6,253.00 9,673.00 6,591.00
Hydice 0.0041 0.52 126.22 0.0075 Program vocabulary (V') 305.00 493.00 384.00
OpenMP Cuprite 0.0321 5.98 186.37 0.0195 Volume (V' L) 51,603.92 86,529.28 56,583.49
Synthetic | 02267 | 43.72 | 192.86 0.0106 Difficulty (D) 203.00 254.00 159.00
Hydice | 0.0033 | 040 | 120.99 0.0098 Effort () 10,475,595.14 | 21,078.436.67 | 8,996,774.57
OpenCL | Cuprite | 0.0339 | 538 | 158.69 0.0217
GPU Synthetic | 0.1536 | 2528 | 164.59 0.0184
Hydice | 0.0008 | 0.11 | 143.10 0.0341
CUDA | Cuprite | 00249 | 427 | 171.30 0.0274
Synthetic | 0.1388 | 23.96 | 172.60 0.0194 Halstead’s length (L) simply adds up the number of unique
Hydice | 0.0170 | 2.04 | 12001 0.0019 h
OpenCL | Cuprite | 0.0738 | 972 | 131.74 0.0120 operators and operands used in the code. A small number of
Xeon_Phi Synthetic | 0.5855 | 7808 | 133.36 0.0060 statements with a high volume (V L) of Halstead would sug-
Hydice | 0.0267 | 2.78 | 10425 0.0014 . . .
OpenMP | Cuprite | 0.1331 | 15.53 | 116.65 0.0075 gest that individual statements are quite complex. Regarding
Sﬂ;gﬁc g-ggég 508-0372 ‘;0120 g-gggg Halstead’s vocabulary (V), it gives a clue about the complexity
OpenCL | Cuprite | 09642 | 3.03 | 3.14 0.0386 of the statements. This measure highlights whether a small
Odroid Synthetic - - - - :
S fioe 00068 T 003 275 - number .of opergtors are used repeatedl‘y (which means less
OpenMP | Cuprite | 04166 | 212 | 5.08 0.0552 complexity) or if a large number of different operators are
Synthetic | 2.8689 | 14.63 | 5.10 0.0318

comes at the expense of reducing performance by orders of
magnitude, which is not always a feasible tradeoff. Also,
observe how the ODROID platform, being a low-power one,
yields the best power efficiency for small data sets, as opposed
to the rest of the considered architectures. Specifically, among
the remaining architectures (CPU, GPU, and Xeon Phi), GPUs
yield the best energy efficiency results. For power-constrained
scenarios, the reduced average power dissipated by the Xeon
Phi can be of great appeal, despite its poor energy efficiency.

F. Code Quality Evaluation

This section addresses an attempt to measure the code
development effort of the three parallel programming para-
digms used in this paper: OpenCL, CUDA, and OpenMP.
Thus, we can characterize the complexity in terms of the
cost prior to subsequent coding. This is of high interest in
terms of acquiring knowledge about the complexity achieved
in the aforementioned parallel implementations in order to take
future decisions.

We will use Maurice Halstead’s [19]—-[21] product hypothe-
sis” effect derived from information theory and psychology.
The metrics are based on the following four measurable
properties of the code.

1) np: The number of distinct operators.

2) ny: The number of distinct operands.

3) Nj: Operators count.

4) N,: Operands count.

Using these input values, the following measures can be
defined.

1) Program Length (L): L = N1 + N».

2) Program Vocabulary (V): V =n + ns.

3) Volume (VL): VL =L x loga(V).

4) Difficulty (D): D = (n1/n2) x (N2/2).

5) Effort (E): E=D x V.

used, which will inevitably be more complex. The volume of
Halstead (V L) uses length and vocabulary to give a measure of
the amount of written code. The Halstead difficulty (D) uses a
formula to assess complexity based on the number of unique
operators and operands. It suggests how difficult is to write
and maintain the code. Finally, the Halstead effort (£) will be
given by the proportional measure of both difficulty (D) and
volume (V L).

The values obtained for each measure in each platform can
be seen in Table VI. In this table, we have averaged the results
obtained for each implementation in different tested platforms,
namely, OpenCL (Xeon CPU, GTX1080 GPU, and Xeon Phi),
OpenMP (Xeon CPU, Xeon Phi CPU, and Odroid), and CUDA
(GTX1080 GPU). In terms of coding effort, we obtain the
maximum score for OpenCL, mainly due to its larger VL
and D scores than their counterparts (CUDA and OpenMP).
On the one hand, the V L score using OpenCL represents an
increment of 53% versus CUDA and 68% versus OpenMP,
respectively. On the other hand, the D score represents an
enlargement of 59% versus CUDA and 20% versus OpenMP,
respectively. The aforementioned values have a global impact
of an overcost effort in terms of OpenCL of 52% and 59% as
compared with CUDA and OpenMP, reciprocally.

We can construct a simple compromise metric taking into
account the performance released by the effort needed (Mpix-
els/Watt per Effort). Accordingly, we present in Table VII,
the obtained values after averaging the three stimuli used.
Focusing on Xeon CPU and GPU GTX1080 platforms,
OpenCL ratio represents 25% of their OpenMP and CUDA
counterparts. This percentage raises up to 44% and 56% for
Odroid and Xeon Phi devices, respectively.

Based on these preliminary results, we take into account all
platforms and programming languages used in this paper in
order to carry out a global analysis of the effort-performance
tradeoff. Therefore, only the complete graph of all the boards
studied in this work and their possible implementations
through the parallel programming paradigms mentioned above
are considered. We depict in Figs. 7-9 the performance-power

BERNABE et al.: PORTABILITY STUDY OF AN OpenCL ALGORITHM FOR AUTOMATIC TARGET DETECTION IN HYPERSPECTRAL IMAGES

TABLE VII

COMPARATIVE PERFORMANCE-POWER CONSUMPTION BY EFFORT
NEEDED (MPIXELS/WATT PER EFFORT IN E10 UNITS) BETWEEN
DIFFERENT PLATFORMS AND DATA SETS

Platforms P.P.L. HYDICE | AVIRIS Cuprite | Synthetic
Xeon OpenCL 1.18 4.60 3.46
OpenMP 7.16 18.61 10.12
GPU OpenCL 4.46 9.87 8.37
CUDA 37.90 30.46 21.56
Xeon_Phi | OpenCL 0.86 5.46 2.73
OpenMP 1.34 7.16 7.64

Odroid OpenCL 27.30 17.56 -

OpenMP 115.22 5.27 30.36

Performance-power consumption by effort (HYDICE)
84,07

50 42,95 41,60 43,11 41,44 38,43
40 3381 3

1 83 &3
30 24,40 22,74 24,97 23,67
20
10
0
\v

Q
ﬁ\?’ R
& K K
’ @Q & Q’(" 0> 03
& o o ¢

o4 Ov Q'VQ
V®9Q00®&°§\
NI

Q.

Parallel programming paradigms

Fig. 7. Tradeoff between performance achieved, power consumption, and
coding effort using different programming paradigms (Hydice stimuli).

Performance-power consumption by effort (AVIRIS Cuprite)
3749

35 30,77

28,44 28,29

23,52

24,00
20,17
i I I I1381I1327I

0’@& v,(,\@z VOQS\QQ@YV’ @Q
VQGQVQQVQ’QQOQ’O’QQQVQ‘?

CEF LT 0§ T O

& NN

Parallel programming paradigms

Fig. 8. Tradeoff between performance achieved, power consumption, and
coding effort using different programming paradigms (Cuprite stimuli).

consumption by effort relationship using several programming
paradigms, where “CL”, “MP,” and “CUDA” mean OpenCl,
OpenMP, and CUDA programming paradigms, respectively.
The real stimuli used at Fig. 7 come from the Hydice scene,
whereas in Fig. 8, the stimuli come from the AVIRIS Cuprite
scene. The platforms used in our experiments are represented
by means of the four-tuple (Xeon CPU—GTX1080 GPU—
Xeon Phi CPU Odroid board). For example, the four-tupler
(MP-CUDA-CL-CL) implies the implementation in the fol-
lowing platforms: Xeon CPU (OpenMP), GTX1080 GPU
(CUDA), Xeon Phi CPU (OpenCL), and Odroid platform
(OpenCL). Regarding Fig. 9, where synthetic stimuli are used,
note that we do not consider the Odroid board due to the lack
of memory to deal with these stimuli. Therefore, in this case,

9509

Performance-power consumption by effort (Synthetic)

25

19,51
20

10,65 10,78 10,48

14,56
9,82
10
s | u I | I I |
0
v‘ c (,v

°"$'&¢°@°$o’
S

Parallel programming paradigms

Fig. 9. Tradeoff between performance achieved, power consumption,
and coding effort using different programming paradigms (synthetic image
stimuli).

the platforms analyzed are established by the following three-
tuple (Xeon CPU, GTX1080 GPU, and Xeon Phi CPU).

As discussed in Section IV-D, due to the characteristics
of the Hydice scenario, parallelism capabilities are not effi-
ciently exploited. The deployment of the parallel environment
overlaps the performance obtained. In other words, the over-
head of the kernel launched is not compensated enough by
the throughput achieved. Consequently, we do not reach the
expected benefits using the OpenCL paradigm in this context.
On the one hand, and even despite of this circumstance,
we can get an average value of 37.79 units of performance-
power consumption by effort (sd=15.31). On the other hand,
the majority of OpenCL-based elements (CL element number
> 3) provide a ratio of 28.20 units, which does not reach the
average values. The four-tuple based on OpenMP and CUDA
coding languages (MP-CUDA-MP-MP) contributes with the
highest score (84.07 units), which appears to be a convenient
solution for moderate size images.

Regarding the Cuprite scenario, the considered tuples
present an average baseline of 21.68 units (sd=7.82). The
solely OpenCL-based tuple (CL-CL-CL-CL) achieves the
highest score (37.49 units), while other CL majority-based
implementations (CL element number > 3) result in a medium
score of 29.55 units, upgrading the baseline ratio. This means
that the use of OpenCL brings a promising relationship score
when dealing with medium-sized images. In addition, the quad
(MP-CUDA-MP-MP) again contributes with a high value
(84.07 units), which still remains as a feasible scheme when
using medium-sized images.

Finally, the synthetic scenario results in a mean value
of 11.37 units (sd=3.11). The only OpenCL-based solu-
tion (CL-CL-CL) outperforms the aforementioned average,
reaching up to the second highest score ratio (14.55 units).
In addition, the tuples with at least two CL elements show an
average ratio of 11.61 units, still over the baseline.

From the experimental stimuli studied, we can conclude
that the four-tuple (CL-CL-CL-CL) is a serious candidate
to obtain the efficient parallel code, providing the best rela-
tionship between performance, power consumption, and effort
in designing the code. In addition, this tuple represents the

9510

second-best choice when using large images. Concerning small
images, it would not be a recommended choice due to the low
performance compared to the OpenMP counterpart.

V. CONCLUSION

A holistic portable OpenCL implementation of the ATDCA
algorithm has been presented and discussed in terms of
performance, energy consumption, and code effort design
considerations. The proposed implementation is compared to
hand-tuned versions developed in previous works. Our results
indicate that the proposed OpenCL implementation can almost
overtake the performance of the hand-tuned ones on a wide
variety of HPC devices, achieving real-time processing in
all of them. It can also be observed that, for small data
sets, the best energy efficiency (in terms of Mpixels/watt)
is achieved by the ODROID platform, but when the image
size is increased, GPU devices emerge as the best platform
in terms of energy efficiency. Future work will focus on the
development of hybrid implementations able to deal with large
scenes that cannot fit into the RAM memory. We also plan on
exploiting other types of architectures such as FPGAs, due to
their capacity to be used as on-board processing modules with
radiation tolerance in spaceborne Earth observation missions.

ACKNOWLEDGMENT

The authors would like to thank the Editors and the three
Anonymous Reviewers for their outstanding comments and
suggestions, which greatly helped them to improve the tech-
nical quality and presentation of this paper.

REFERENCES

[1] A. Plaza and C.-I. Chang, High Performance Computing in Remote

Sensing. Boca Raton, FL, USA: Taylor & Francis, 2007.

Y. Tarabalka, T. V. Haavardsholm, I. Késen, and T. Skauli, “Real-time

anomaly detection in hyperspectral images using multivariate normal

mixture models and GPU processing,” J. Real-Time Image Process.,

vol. 4, no. 3, pp. 287-300, 2009.

G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable LDPC decoding

on multicores using OpenCL,” IEEE Signal Process. Mag., vol. 29, no. 4,

pp. 81-109, Apr. 2012.

[4] Y. Zhang, M. Sinclair II, and A. A. Chien, “Improving perfor-
mance portability in OpenCL programs,” in Proc. 28th Int. Supercom-
put. Conf. (ISC), Leipzig, Germany, Jun. 2013. [Online]. Available:
https://www.springer.com/gp/book/9783642387494

[5] J. F. Fabeiro, D. Andrade, and B. B. Fraguela, “Writing a performance-
portable matrix multiplication,” Parallel Comput., vol. 52, pp. 65-77,
Feb. 2016.

[6] H. Ren and C.-I. Chang, “Automatic spectral target recognition in

hyperspectral imagery,” IEEE Trans. Aerosp. Electron. Syst., vol. 39,

no. 4, pp. 1232-1249, Oct. 2003.

S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. A. Benediktsson,

and R. Sarmiento, “Hyperspectral unmixing on GPUs and multi-core

processors: A comparison,” IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens., vol. 6, no. 3, pp. 1386-1398, Jun. 2013.

S. Bernabe, S. Lopez, A. Plaza, and R. Sarmiento, “GPU implemen-

tation of an automatic target detection and classification algorithm for

hyperspectral image analysis,” IEEE Geosci. Remote Sens. Lett., vol. 10,

no. 2, pp. 221-225, Mar. 2013.

[9] S. Bernabe, S. Lopez, A. Plaza, R. Sarmiento, and P. G. Rodriguez,

“FPGA design of an automatic target generation process for hyperspec-

tral image analysis,” in Proc. IEEE 17th Int. Conf. Parallel Distrib. Syst.,

Dec. 2011, pp. 1010-1015.

S. Bernabe, F. D. Igual, G. Botella, C. Garcia, M. Prieto-Matias,

and A. Plaza, “Performance portability study of an automatic target

detection and classification algorithm for hyperspectral image analysis
using OpenCL,” Proc. SPIE, vol. 9646, Oct. 2015, Art. no. 96460M.

[2

—

[3

[t

[7

—

[8

—_

[10]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 11, NOVEMBER 2019

[11] S. Barrachina et al., “An integrated framework for power-performance
analysis of parallel scientific workloads,” in Proc. 3rd Int. Conf. Smart
Grids, Green Commun. IT Energy-Aware Technol., 2013, pp. 114-119.
J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785,
Jul. 1994.

S. Lopez, P. Horstrand, G. M. Callico, J. F. Lopez, and R. Sarmiento,
“A low-computational-complexity algorithm for hyperspectral endmem-
ber extraction: Modified vertex component analysis,” IEEE Geosci.
Remote Sens. Lett., vol. 9, no. 3, pp. 502-506, May 2012.

M. Song and C. I. Chang, “A theory of recursive orthogonal subspace
projection for hyperspectral imaging,” IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 6, pp. 3055-3072, Jun. 2015.

C.-1. Chang, Hyperspectral Imaging: Techniques for Spectral Detection
and Classification. New York, NY, USA: Kluwer Academic, 2003.

G. S. Miller, “The definition and rendering of terrain maps,” ACM
SIGGRAPH Comput. Graph., vol. 20, no. 4, pp. 39-48, Aug. 1986.
C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct
signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 3, pp. 608—619, Mar. 2004.

J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace
identification,” IEEE Trans. Geosci. Remote Sensing, vol. 46, no. 8,
pp. 2435-2445, Aug. 2008.

H. A. Jensen and K. Vairavan, “An experimental study of software
metrics for real-time software,” IEEE Trans. Softw. Eng., vols. SE-11,
no. 2, pp. 231-234, Feb. 1985.

A. H. Dutoit and B. Bruegge, “Communication metrics for software
development,” IEEE Trans. Softw. Eng., vol. 24, no. 8, pp. 615-628,
Aug. 1998. doi: 10.1109/32.707697.

Z. Chang, R. Song, and Y. Sun, “Validating Halstead metrics for
scratch program using process data,” in Proc. IEEE Int. Conf. Consum.
Electron.-Taiwan (ICCE-TW), May 2018, pp. 1-5.

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

Sergio Bernabé received the degree in computer
engineering and the M.Sc. degree in computer
engineering from the University of Extremadura,
Céceres, Spain, in 2010, and the joint Ph.D. degree
from the University of Iceland, Reykjavik, Iceland,
and the University of Extremadura, Badajoz, Spain,
in 2014.

He has been a Visiting Researcher with the Insti-
tute for Applied Microelectronics, University of Las
Palmas de Gran Canaria, Las Palmas, Spain, and
also with the Computer Vision Laboratory, Catholic
University of Rio de Janeiro, Rio de Janeiro, Brazil. He was a Post-Doctoral
Researcher (funded by FCT) with the Instituto Superior Técnico, Technical
University of Lisbon, Lisbon, Portugal, and a Post-Doctoral Researcher
(funded by the Spanish Ministry of Economy and Competitiveness) with the
Complutense University of Madrid (UCM), Madrid, Spain. He is currently
an Assistant Professor with the Department of Computer Architecture and
Automation, UCM. His research interests include the development and effi-
cient processing of parallel techniques for different types of high-performance
computing architectures.

Dr. Bernabé was a recipient of the Best Paper Award of the IEEE JOURNAL
OF SELECTED TOPICS IN APPLIED EARTH OBSERVATION AND REMOTE
SENSING (JSTARS) in 2013 and the Best Ph.D. Dissertation Award at the
University of Extremadura, Ciceres, in 2015. He is an Active Reviewer
of international conferences and international journals, including the IEEE
JSTARS, the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENS-
ING (TGRS), and IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
(GRSL).

http://dx.doi.org/10.1109/32.707697

BERNABE et al.: PORTABILITY STUDY OF AN OpenCL ALGORITHM FOR AUTOMATIC TARGET DETECTION IN HYPERSPECTRAL IMAGES

Carlos Garcia received the B.S. degree in physics
and the Ph.D. degree in computer science from
the Universidad Complutense de Madrid (UCM),
Madrid, Spain, in 1999 and 2007, respectively.

He is currently an Associate Professor with UCM.
He has authored more than 50 research papers,
including more than 25 peer-reviewed articles in
international journals. He has frequently served as a
referee for international journals on image process-
ing and high-performance computing. His research
interests include high-performance computing for
heterogeneous parallel architecture, including efficient parallel exploitation
on modern devices such as multicore, manycore, GPUs, and FPGAs. These
aspects have motivated the adoption of these technologies for the acceleration
of remote sensing and image reconstruction.

Francisco D. Igual received the bachelor’s and
Ph.D. degrees in computer science from Jaume I
University, Castellon, Spain, in 2006 and 2011,
respectively.

In 2012, he joined the Computer Architecture
and Automation Department, Universidad Com-
plutense de Madrid (UCM), Madrid, Spain, as a
Post-Doctoral Researcher, where he is currently an
Assistant Professor. He has authored or coauthored
more than 50 papers in international conferences
and journals. His research interests include parallel
algorithms for numerical linear algebra and multimedia applications, task
scheduling, and runtime implementations on high-performance heterogenous
architectures.

Guillermo Botella received the M.A.Sc. degree in
physics, the M.A.Sc. degree in electronic engineer-
ing, and the Ph.D. degree in computer engineering
from the University of Granada, Granada, Spain,
in 1999, 2001, and 2007, respectively.

He was a Research Fellow with the Department of
Architecture and Computer Technology, Universidad
de Granada, funded by EU, and the Vision Research
Laboratory, University College London, London,
U.K. He joined the Department of Computer Archi-
tecture and Automation, Complutense University of
Madrid, Madrid, Spain, as an Assistant Professor. From 2008 to 2012,
he was a Visiting Professor with the Department of Electrical and Computer
Engineering, Florida State University, Tallahassee, FL, USA. His research
interests include digital signal processing for very large-scale integration, field-
programmable gate arrays, GPGPUs, vision algorithms, and IP protection of
digital systems.

9511

Manuel Prieto-Matias received the Ph.D. degree in
computer science from the Complutense University
of Madrid (UCM), Madrid, Spain, in 2000.

He is currently a Full Professor with the
Department of Computer Architecture, UCM.
He has co-written numerous articles in journals and
for international conferences in the field of parallel
computing and computer architecture. His research
interests include parallel computing and computer
architecture. Most of his activities have focused
on leveraging parallel computing platforms and on
complexity-effective microarchitecture design. His research addresses emerg-
ing issues related to heterogeneous systems, memory hierarchy performance,
and energy-aware computing, with a special emphasis on the interaction
between the system software and the underlying architecture.

Dr. Prieto is a member of the ACM and IEEE Computer Society.

Antonio Plaza (F’15) received the M.Sc. and
Ph.D. degrees in computer engineering with the
Department of Technology of Computers and Com-
munications, University of Extremadura, Badajoz,
Spain, in 1999 and 2002, respectively.

He is currently the Head of the Hyperspectral
Computing Laboratory, Department of Technology
of Computers and Communications, University of
Extremadura. He has authored more than 600 pub-
lications, including 249 JCR journal papers (more
than 160 in IEEE journals), 24 book chapters, and
more than 300 peer-reviewed conference proceeding papers. He has guest
edited 10 special issues on hyperspectral remote sensing for different journals.
His research interests include hyperspectral data processing and parallel
computing of remote sensing data.

Dr. Plaza is a fellow of the IEEE for contributions to hyperspectral data
processing and parallel computing of Earth observation data. He was a
member of the Editorial Board of the IEEE GEOSCIENCE AND REMOTE
SENSING NEWSLETTER from 2011 to 2012 and the /EEE Geoscience and
Remote Sensing Magazine in 2013. He was also a member of the steering
committee of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING (JSTARS). He was a recipient of
the recognition of Best Reviewers of IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS in 2009, the recognition of Best Reviewers of the
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING in 2010,
the Best Column Award of the IEEE Signal Processing Magazine in 2015,
the 2013 Best Paper Award of the IEEE JSTARS, the most highly cited
paper in the Journal of Parallel and Distributed Computing from 2005 to
2010, and best paper awards at the IEEE International Conference on Space
Technology and the IEEE Symposium on Signal Processing and Information
Technology. He served as the Director of Education Activities for the IEEE
Geoscience and Remote Sensing Society (GRSS) from 2011 to 2012 and as
the President of the Spanish Chapter for the IEEE GRSS from 2012 to 2016.
He was an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING from 2007 to 2012 and the IEEE ACCESS. He served
as the Editor-in-Chief for the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING from 2013 to 2017. He is included in the 2018 Highly
Cited Researchers List (Clarivate Analytics). He has reviewed more than
500 manuscripts for more than 50 different journals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K 0
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition (cmyk-color-space)
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

