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Abstract— Convolutional neural networks (CNNs) exhibit good
performance in image processing tasks, pointing themselves as
the current state-of-the-art of deep learning methods. How-
ever, the intrinsic complexity of remotely sensed hyperspectral
images still limits the performance of many CNN models.
The high dimensionality of the HSI data, together with the
underlying redundancy and noise, often makes the standard CNN
approaches unable to generalize discriminative spectral–spatial
features. Moreover, deeper CNN architectures also find challenges
when additional layers are added, which hampers the network
convergence and produces low classification accuracies. In order
to mitigate these issues, this paper presents a new deep CNN
architecture specially designed for the HSI data. Our new model
pursues to improve the spectral–spatial features uncovered by the
convolutional filters of the network. Specifically, the proposed
residual-based approach gradually increases the feature map
dimension at all convolutional layers, grouped in pyramidal
bottleneck residual blocks, in order to involve more locations as
the network depth increases while balancing the workload among
all units, preserving the time complexity per layer. It can be seen
as a pyramid, where the deeper the blocks, the more feature
maps can be extracted. Therefore, the diversity of high-level
spectral–spatial attributes can be gradually increased across
layers to enhance the performance of the proposed network with
the HSI data. Our experiments, conducted using four well-known
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HSI data sets and 10 different classification techniques, reveal
that our newly developed HSI pyramidal residual model is able
to provide competitive advantages (in terms of both classification
accuracy and computational time) over the state-of-the-art HSI
classification methods.

Index Terms— Convolutional neural networks (CNNs), hyper-
spectral imaging (HSI), residual networks (ResNets).

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) collects valuable
information for monitoring the surface of Earth [1],

thus addressing important remote sensing applications, includ-
ing environmental management [2], agriculture [3], surveil-
lance [4], and physics [5]. In general, HSI science aims at
acquiring data using hundreds of (narrow) spectral bands in
order to simultaneously provide detailed spectral and spa-
tial information. Therefore, HSIs are particularly useful for
providing highly precise material identification by analyzing
discriminative spectral and spatial features over specific areas
of interest [6].

In the literature, different kinds of unsupervised and
supervised approaches have been proposed to classify the
HSI data [7]. Unsupervised methods do not make use of the
labeled data, so they do not need a supervised training phase,
which makes them suitable when poor prior knowledge of
the considered scenes is available. In this sense, unsupervised
clustering methods such as K-means [8] are used. Recently,
more sophisticated unsupervised methods have been developed
to efficiently extract a proper set of features for remote sensing
data classification and segmentation purposes. In this sense,
information theory approaches are showing an increasing
potential in remote sensing data management and analysis,
because they pursue to uncover hidden data interactions and
correlations, which eventually can be very useful to deal with
the inherent complexity of HSI data. For instance, Marinoni
and Gamba [9] present a new unsupervised feature extraction
approach based on data-driven discovery for data classifi-
cation, which exploits mutual information maximization in
order to retrieve the most relevant features. Another relevant
information theory-based approach is the one in [10], where
the authors present an efficient classification framework that
relies on an entropy-based feature selection together with a
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Pareto optimality criteria in order to detect relevant HSI data
patterns for classification purposes.

Although unsupervised methods only rely on the data
itself to categorize the pixels in the scene, supervised
models have shown to provide more accurate results by
learning the data relations from a given training set con-
taining ground-truth information [11]. Over the past years,
a wide variety of supervised machine learning paradigms
have been successfully applied to remotely sensed HSI
classification [12]. Support vector machines (SVMs) and
kernel-based methods [13], statistical procedures as principal
component analysis (PCA) [14] or logistic regression [15],
Bayesian models [16], random forest (RF) [17], and neural
networks [18] are amongst the most popular approaches.

Nonetheless, the intrinsic complexity of hyperspectral
imagery still makes many of these approaches unable to
consistently provide satisfactory classification results, espe-
cially under challenging scenarios [1]. Note that the num-
ber of training samples in the HSI field is usually rather
limited compared to the available number of spectral bands,
and this fact typically results in an undercomplete training
process which is prone to overfitting, i.e., the so-called Hughes
phenomenon [19]. Additionally, spectral redundancy and noise
are often present in HSI since contiguous bands tend to
be highly correlated, and the physical limitations of the
acquisition technology always introduce some sort of signal
perturbations.

Several strategies have been adopted in the remote sensing
field to mitigate these problems and, consequently, improve
the resulting HSI classification accuracy. This includes feature
extraction [20]–[22], band reduction [23]–[26], data augmen-
tation [27], and active learning techniques [28]–[30], [31].
However, one of the most popular research lines to deal
with the high complexity of the HSI domain is based on
developing spectral–spatial classifiers [6], which can achieve
better classification performance than pixelwise classifiers,
since they take into account not only the information of the
spectral signatures but also the spatial–contextual information.
He et al. [32] resort to discriminative low-rank Gabor filtering
which is shown to be particularly effective for spatial–spectral
HSI classification. Approaches such as this often pursue a
reduction of classification uncertainty by combining each
pixel spectra with the size and shape of the corresponding
structure to which it belongs; therefore, highly powerful
models are usually required to effectively exploit the HSI
spectral–spatial components [33], [34].

In this scenario, supervised deep learning models
are attracting increased attention. Deep network-based
approaches [35], [36] have been recently introduced to the
hyperspectral community, showing a great potential in the
field of remote sensing classification. The main idea behind
deep learning is to extract higher abstract semantic features
from the original data with a hierarchical representation
method. In other words, the supervised deep learning approach
may be considered as a nonlinear mapping from the fea-
ture space to the label space, achieving higher expressibility
through a hierarchy of layers. Chen et al. [18] proposed a
stacked autoencoder (SAE) to extract the high-level features

for HSI classification using spectral–spatial information.
Zhao et al. [37] also exploited a stacked sparse autoencoder to
extract layerwise more abstract and deep-seated features from
spectral feature sets, spatial feature sets, and spectral–spatial
vectors, using RF for classification purposes. Li et al. [38]
introduced the deep belief network (DBN) for spectral–spatial
feature extraction and classification of hyperspectral images.
Zhong et al. [39] introduced a diversity promoting prior
into the pretraining (unsupervised) and fine-tuning proce-
dure (supervised) of the DBN model in order to enhance
the HSI classification performance. However, these models
suffer from spatial information loss, because they require
flat spatial HSI patches (in one dimension) to satisfy their
input requirements, and may not effectively exploit the spatial
information [40]. Ma et al. [41] tried to overcome these limi-
tations by implementing a spatial updated deep autoencoder in
order to exploit jointly spectral and spatial features from HSIs,
replacing each feature with the weighted average computed
from the surrounding samples. To further address this issue,
Chen et al. [42] proposed the use of convolutional neural
networks (CNNs) for HSI classification. Compared to SAE
and DBN, the CNN model allows using spatial HSI patches
as data input, providing a natural way to incorporate this kind
of information and enhance the classification performance.

Several CNN-based models can be found in the literature for
HSI classification using spectral–spatial features. Following
the pixel-based approach, Mei et al. [43] presented a CNN
model integrating spectral signatures and spatial context by
preprocessing each pixel, i.e., calculating the mean of the
pixel neighborhood and the mean and standard deviation per
spectral band of this neighborhood. Li et al. [44] combined
the CNN model with pixel pairs to learn discriminative fea-
tures, using a majority voting strategy to obtain the final
classification result. Other relevant approaches are proposed
by Yang et al. [45] and Zhang et al. [46], where they pro-
posed two different CNN models to separately extract spectral
and spatial features (the last one merging PCA with CNN),
combining them by a softmax regression classifier. More-
over, Zhao and Du [47] combined a spatial feature extraction
process based on the CNN model with a spectral feature
extraction process based on the balanced local discriminant
embedding, stacking the obtained features and then performing
a final classification step. Although these methods merge
different kinds of techniques in addition to CNNs to separately
extract spectral–spatial information, they do not take full
advantage of the joint spectral–spatial correlation information.
In contrast, the deep models in [48]–[50] can learn both the
spatial and the spectral information, taking as input data 3-D
blocks from the original hyperspectral image and calculating
3-D convolution kernels for each pixel together with its spatial
neighborhood and the corresponding spectral information.

However, training very deep CNNs with HSI data is still dif-
ficult, due to the loss of information produced by the vanishing
gradient problem [51], where gradients obtained by the activa-
tion outputs of each processing layer of the network tend to be
smaller, making a poor propagation of activations and gradi-
ents and elongating the cost function. As a result, the accuracy
of deep CNNs is saturated and then degrades rapidly. Recently,
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advanced deep CNN schemes have been proposed to uncover
highly discriminative spectral–spatial features pervading the
HSI data. It is the case of the residual network (ResNet) [52],
which defines a CNN extension based on processing blocks,
called residual blocks [53] as fundamental structural elements
to facilitate learning of deeper networks and enabling them
to be substantially deeper. These residual blocks are modules
with the same topology that perform a set of transformations
whose outputs are aggregated by summation. In fact, ResNet
can be interpreted as a large ensemble of much shallower
networks [54], creating a much deeper architecture than its
plain counterparts, ensuring a minimum loss of information
by modeling each block closer to an identity mapping than to
a zero mapping, and adding shortcut connections between each
residual block so that they receive more detailed information
rather than just abstract information. As a result, ResNet
models [53], [55], [56] may outperform standard deep CNNs
in HSI analysis and classification [48], [57].

In this paper, we propose a new ResNet model based
on pyramidal bottleneck residual units to achieve fast and
accurate HSI analysis and classification, using both spectral
and spatial information. This new deep model is composed of
several blocks of stacked convolutional layers, which have a
diabolo (bottleneck) architecture in which the output layer is
larger than the input layer. In this way, the number of spectral
channels in the original HSI cube is increased step by step on
each block, creating the illusion of a pyramid where, as the
residual units are deeper, more feature maps can be extracted,
allowing to learn more robust spectral–spatial representations
from HSI cubes. However, these HSI pyramidal bottleneck
residual units are still computationally expensive, which forces
to adopt acceleration techniques to reduce execution time.
In this sense, the proposed network has been accelerated
using graphical processing units (GPUs). The obtained results
(using four well-known hyperspectral data sets) show that the
proposed model can outperform not only the spectral–spatial
CNN but also the baseline HSI-ResNet classification results,
extracting more discriminative spectral–spatial features with-
out the need to use large amounts of training data, which may
have great uncertainty.

The remainder of this paper is organized as follows.
Section II describes the proposed method. Section III validates
the proposed model by drawing comparisons with other state-
of-the-art HSI classification approaches. Finally, Section IV
concludes this paper with some remarks and hints at plausible
future research lines.

II. METHODOLOGY

This section is structured as follows. First, we set notation
and provide an overview of classic CNNs while highlighting
the connections of our newly proposed model with the tra-
ditional CNN architecture. Then, we introduce the proposed
hyperspectral pyramidal ResNet model.

A. Convolutional Neural Networks

Traditional neural networks (deep or shallow ones) are
characterized by 1-D architectures composed of fully con-
nected (FC) layers, e.g., multilayer perceptrons (MLPs),

AEs, or DBNs, which can lead to the loss of HSI structural
information, in particular the intrinsic 2-D data informa-
tion contained in the spatial domain of the hyperspectral
images, because of the vector-based feature alignment of
each layer [58]. Instead of that, CNN models are able to
automatically exploit not only spectral information but also the
relevant spatial–contextual features and also spectral–spatial
features, depending on their architecture. Moreover, CNNs
employ local connections defined in each layer to deal with
spectral–spatial dependencies via sharing weights, i.e., layers
are applied over defined and small regions of the input data,
obtaining an output volume composed of feature maps which
will be the input of the next layer.

Let us suppose an hyperspectral image X ∈ R
N×W×H ,

where N , W , and H are the spectral bands, width, and height
respectively. The pixel xi, j of X (with i = 1, 2, . . . , W
and j = 1, 2, . . . , H ) can be defined as the spectral vector
xi, j ∈ R

N = [xi, j,1, xi, j,2, . . . , xi, j,N ]. Also, we can define
a neighboring region pi, j ∈ R

d×d around xi, j , composed of
pixels from (i − (d/2), j − (d/2)) to (i + (d/2), j − (d/2))
and from (i − (d/2), j + (d/2)) to (i + (d/2), j + (d/2)).
If p takes into account the spectral information, it can be
defined as pi, j ∈ R

N×d×d . Depending on the architecture of
the CNN layers and the kind of data that they use as input (the
pixel vector xi, j ∈ R

N , the spatial region pi, j ∈ R
d×d , or the

spectral–spatial region pi, j ∈ R
N×d×d ), we can classify CNNs

into three categories.
1) Spectral-based classification approaches, also called

1-D-CNNs, which are conceptually simple and easier to
understand and implement because these models follow
the pixel vector-based approach of traditional networks,
being the spectral feature xi, j ∈ R

N of the original HSI
data directly deployed as the input vector. As a result,
each 1-D-layer obtains an output composed of n feature
vectors, being n the number of filters or kernels.

2) Spatial-based classification approaches, also called
2-D-CNNs, which are the most widely used for image
analysis and categorization tasks. In these models,
the HSI is normally preprocessed via PCA or similar
dimension reduction methods (such as independent com-
ponent analysis [59] or maximum noise fraction [60],
and among others) in order to reduce the number of
spectral bands, and neighboring regions pi, j ∈ R

d×d

are extracted from the original image in order to create
the input patches that 2-D-CNN models process to
extract the spatial feature representation. As a result,
each 2-D-layer obtains an output made up of n feature
maps.

3) Spectral–spatial classification approaches, also called
3-D-CNNs, make use of a 3-D-architecture to jointly
extract spectral–spatial information. In this case, neigh-
boring spatial–spectral regions pi, j ∈ R

N×d×d are
extracted from the original image in order to create the
input data blocks that feed the network.

The proposed method makes use of 2-D-CNN approaches,
implementing 2-D layers. However, all the spectral bands will
be used in order to create the input data blocks pi, j ∈ R

N×d×d

instead of reducing the original spectral signatures using PCA.
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This will allow us to extract not only spatial information
but also spectral information, in a fast and integrated way,
performing a full spectral–spatial feature extraction and further
allowing 3-D processing. In particular, four kinds of CNN
layers will be used by the proposed architecture.

1) Convolution layers (CONV) that perform a dot product
between their weights and biases and small windows of
the input volume data defined by a kernel k×k, obtaining
an output volume composed of n feature maps, where n
is the number of kernels

pl+1 = φ(Wl · pl + bl) (1)

where pl+1 is the output with n feature maps of the lth
CONV layer, Wl is weight matrix defined by the filter
bank with kernel size k × k, and bl of the i th CONV
layer, pl is the output feature maps of the l −1th CONV
layer, and φ(·) the nonlinear activation function.

2) Batch normalization layers (BATCH-NORM) reduce
the covariance shift by means of which the hidden
unit values shift around, allowing a more independent
learning process in each layer. It regularizes and speeds
up the training process, imposing a Gaussian distribution
on each batch of feature maps

BN(x) = x − mean[x]√
Var[x] + �

· γ + β (2)

where γ and β are learnable parameter vectors, respec-
tively, and � is a parameter for numerical stability.

3) Nonlinearity layers embed a nonlinear function applied
to each feature map’s component in order to learn non-
linear representations. In this layer, the rectified linear
unit (ReLU) [61], [62] has been implemented.

4) Pooling layers (POOL) reduce data variance and compu-
tation complexity, making the features location-invariant
summarizing the output of multiple neurons in
CONV layers through a pooling function, e.g., max-
pool or average-pool.

B. Proposed Hyperspectral Deep Network for
Spectral–Spatial Classification

We denote a hyperspectral data cube as X ∈ R
N×W×H ,

containing two spatial dimensions: the width W and height
H , and one spectral dimension, the number of spectral
bands or channels N . In order to exploit both sources of infor-
mation, we present a learning framework based on very deep
CNNs, with the aim of performing accurate spectral–spatial
HSI classification, taking into account the spectral signature
of each pixel xi, j ∈ X and its spatial neighborhood. However,
training very deep CNNs becomes more difficult as depth
increases due to the loss of information produced by the
vanishing gradient problem [51], where the activation outputs
of the network produce a poor propagation of activations and
gradients, being gradients close to zero, which elongates the
cost function that must be optimized and cannot sufficiently
change the model weights at each iteration. This hampers
the convergence of the network from the beginning, where
accuracy first saturates and then degrades rapidly.

Fig. 1. Typical residual unit architecture R(i)
j . F(·) + p j is performed by

the shortcut connection, with elementwise addition.

One of the most effective ways to solve the vanish-
ing/exploding gradient problem is the use of a ResNet
model [52], through a residual block-based [53] architecture.
This model can be interpreted as a large ensemble of many
grouped and shallower networks, similar to a matrioska. Let us
consider a ResNet that is composed of M groups or modules.
The i th module Mi , with i = 1, 2, . . . , M , will be composed
of R(i) residual units and the j th residual unit R(i)

j of Mi ,
with j = 1, 2, . . . , R(i) composed of a few stacked layers, nor-
mally CONV layers stacked with ReLUs, and BATCH-NORM
layers. In this architecture, two types of connections are
given (see Fig. 1), the feedforward connection that connects
layer-to-layer, i.e., each layer is connected with the previous
one and the next one, and the skip or shortcut connection
between each residual unit, i.e., a linear layer that connects
the input of R(i)

j with its output, preserving information across
layers. In this way, two operations are carried out related with
these connections [see (3)], residual learning by feedforward
connections and identity mapping by shortcut connections

y j = h(p j ) + F(p j ,W j )

p j+1 = φ(y j ) (3)

where p j and p j+1 are the input and output feature maps of the
j th residual unit, respectively, W j = {W( j )

l |1 ≤ l ≤ L j } is the
weight matrix of the L j CONV layers associated with the j th
residual unit, F(·) is the residual function, h(p j ) = p j is the
identity mapping, and φ(·) is an activation function (normally
a ReLU). The goal of the network is to learn the residual
function F(·) with respect to h(p j ) = p j .

Also, in the ResNet, each R(i)
j shares the same topology,

whose outputs are aggregated by summation and subject to
two design rules: 1) for the same output feature map spatial
size, the layers have the same number of filters n and 2) if the
feature map size is halved, the number of filters n is doubled in
order to preserve the time complexity per layer. The main idea
behind this structure is that each residual unit is configured to
perform the same recognition task as a single layer of the
traditional CNN.

An interesting point of ResNets is the design of the residual
blocks, depending on the size of the obtained feature maps of
each CONV layer (as we can observe in Fig. 2 looking at the
gray contours that indicate the size of each layer). As opposed
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Fig. 2. Different residual unit architectures showing only CONV layers.
(Left) Traditional residual units, where CONV layers have exactly the same
topology. (Center) Bottleneck residual units, where feature maps are reduced
and restored in depth for the input and output layers, maintaining the size
between units. (Right) Pyramidal bottleneck residual units, where the number
of channels of the CONV layers are gradually increased at every unit, resulting
in progressively wider layers.

to traditional residual units, where each CONV layer shares
the same topology, bottleneck residual units [52] have demon-
strated to be more economical than the former, where the input
and output CONV layers first reduce and then restore the depth
dimension of the feature maps, allowing a faster execution of
each residual unit. The pyramidal bottleneck residual unit [55]
is a modification of the latter that outperforms the results of
traditional residual units. This kind of units is characterized
by a diabolo architecture, with the output layer being larger
than the input layer (from the number of channels point of
view), which imposes a processing on the identity mapping
h(p j ) = p j because of the different depth sizes between the
original input feature map p j and the resulting feature maps of
the residual function F(p j ,W j ). In order to solve this issue
in a parameter-free way, pyramidal ResNets [55] implement a
zero-padded shortcut, i.e., they add extra zero entries padded
until reaching the increased dimension.

However, these residual units have been traditionally
developed for only spatial feature extraction, in order to
perform RGB image analysis and processing. Here we intro-
duce, for the first time in the literature, a new residual unit
inspired by pyramidal bottleneck residual units to perform the
spectral–spatial classification of the HSI data. Fig. 3 provides a
graphical illustration of our model architecture, which follows
the same matrioska scheme of a ResNet. In this case, each
module Mi is renamed as pyramidal module Pi , where the
j th residual unit is implemented as a pyramidal bottleneck
residual unit B(i)

j . Also, this network implements zero-padded

identity-mapping shortcut connections for each B(i)
j , h∗(·).

Traditionally, CNNs are fed with a completely normal-
ized image prior in order to perform classification. However,
the HSI data typically exhibit land-cover classes that are
highly mixed within the image X ∈ R

N×W×H , so each pixel
xi, j ∈ R

N needs to be sent one by one to the network. In order
to exploit spectral–spatial information, 3-D neighboring blocks
around each xi, j are extracted, denoted by pi, j ∈ R

N×d×d , and
sent to the model as input data, following a border mirroring
method described in [50]. Moreover, the original HSI data X
is normalized to zero mean and unit variance. Patches pass
through five different modules, which compose the very deep
neural network: one input module called C , three pyramidal
modules called P1, P2, and P3, and the final output module.

The input module C is made up of a CONV layer, with a
kernel size N × k1 × k1 and a number of kernels n1, followed
by a BATCH-NORM layer. This module performs a first
spectral–spatial feature extraction from the original input data,
preparing its output feature maps for the rest of the network.

The next pyramidal modules, P1, P2, and P3, are composed
of three pyramidal bottleneck residual units each one, i.e., B(i)

1 ,
B(i)

2 , and B(i)
3 , with i = {1, 2, 3}. At this point, a new

architecture for the pyramidal bottleneck residual units has
been implemented in order to perform spectral–spatial HSI
feature processing. As we can observe in Fig. 3, each B(i)

j is
made up of several stacked layers, in particular three CONV
layers, preceded by the corresponding BATCH-NORM layers,
with a ReLU activation function at the end of the unit.
Specifically, the distribution of the layers can be summarized
as follows: BATCH-NORM1 − CONV1 − BATCH-NORM2
− CONV2 − BATCH-NORM3 − CONV3 − ReLU.

In order to exploit the spectral–spatial information contained
in the HSI data, the lth CONV layer of the j th residual
unit has been implemented with a filter bank defined by its
own kernel size, n( j )

l−1 × k( j )
l × k( j )

l , and its own number of

kernels, n( j )
l . As a result, each CONV layer takes into account

all the spectral information contained in its input feature maps,
which is defined by the number of feature maps of the previous
layer n( j )

l−1, and processes the spatial information within a

window over the feature maps defined by k( j )
l × k( j )

l . In this
way, each layer exploits both kinds of features spectral and
spatial, computing its output feature maps via (1), with n( j )

l
maps.

Moreover, following the implemented spectral–spatial pyra-
midal bottleneck residual block B(i)

j , the output feature map
can be obtained by reformulating (3) as follows:

y(i)
j = h∗(p(i)

j

) + F(
p(i)

j ,W(i)
j

)
p(i)

j+1 = φ
(
y(i)

j

)
with F(

p(i)
j ,W(i)

j

)
equals to:

for l in L: p(i)
j = W( j )

l · BN
(
p(i)

j

) + b( j )
l (4)

where p(i)
j and p(i)

j+1 are the input and output feature maps

of the pyramidal bottleneck residual unit B(i)
j , respectively,

h∗(p(i)
j ) is the zero-padded identity-mapping shortcut con-

nection, W(i)
j denotes all the weights and biases of each

CONV layers associated with B(i)
j , where L j is the number

of CONV layers, F(p(i)
j ,W(i)

j ) is the dot product between
the input feature maps and the CONV layers weights where
W j = {W( j )

l |1 ≤ l ≤ L j } being W( j )
l and b( j )

l the weight
matrix and bias vector of the lth CONV layer, φ is the ReLU
activation function, and BN(·) is the batch-normalization of
the data. We must highlight that P1 keeps the spatial feature
size, setting the strides in all the CONV layers of each B(1)

j
equal to s = 1. However, P2 and P3 implement two different
mechanisms to perform downsampling over the input data.
As we can see, in the first residual unit of both modules—
B(2)

1 and B(3)
1 —there is a CONV layer (in particular CONV2)

with stride equal to s = 2 and a downsampling layer added
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Fig. 3. Proposed hyperspectral pyramidal ResNet architecture model. The input block pi, j ∈ R
N×d×d is passed through five different modules that compose

the hyperspectral pyramidal ResNet: C , P1, P2, P3, and the output modules. C is composed of a CONV and a BATCH-NORM layers, while P1, P2, and
P3 modules, also called pyramidal modules, are composed of three pyramidal bottleneck residual units (B(i)

1 , B(i)
2 and B(i)

3 , being i = {1, 2, 3} the pyramid
layer). These residual units are composed of three BATCH-NORM layers followed by their corresponding CONV layers and with a ReLU at the end of the
unit. Instead of P1, which maintains the spatial size, P2 and P3 reduce the data space adding strides equal to s = 2 (green CONV layer) and a downsampling
layer. Finally, the output module is composed of a downsampling layer and an FC layer that performs the final classification. Each CONV layer has its own
number of filters and kernel sizes, n1 and k1 for the first module and n( j )

l and k( j )
l for the pyramid layers (being j = 1, 2, 3 the j th residual unit B(i)

j and
l = 1, 2, 3 the number of the lth CONV layer). The FC layer is composed of Nclass neurons, being Nclass the number of different land-cover classes in the
original HSI data.

at the end of the unit. This last downsampling layer applies
an average pooling over the input data in order to reduce
data variance and extract low-level features from the spatial
neighborhood, feeding those to the next layer. At this point,
it is interesting to point that, instead of following the traditional
two rules of residual units, the pyramidal ResNet approach
has been adopted in order to calculate the depth at the end
of each B(i)

j , called N (i)
j , attempting to gradually increase the

depth of the feature map at each unit instead of doubling it
in certain units, which allows to distribute the computational
burden associated with the increase in the feature maps in an
uniform way. In particular, (5) [55] has been adopted in order
to linearly increase the depth of feature maps at each residual
unit

N (i)
j =

{
A, if i = 1 and j = 1⌊

N (i)
j−1 + α

N (net)

⌋
, otherwise

(5)

where A is the initial depth of the input volume data, N (i)
j is

the dimensionality of the feature map associated with the j th
residual unit, B(i)

j , which belongs to the i th module, Pi , and

N (net) = ∑P
i=1 B(i) represents the total number of residual

units, being P and B(i) the number of pyramid modules and
the number of pyramidal bottleneck residual units per module,
respectively.

Finally, the output feature maps of the last pyramidal mod-
ule P3 are downsampled one last time with average pooling,
and reshaped into a vector in order to feed an FC layer that is
added at the end of the network in order to perform the final
classification task. On the other hand, the neural model has
been optimized using the stochastic gradient descent method,
with 200 epochs in the comparative experiments and a variable
learning rate, with LR = 0.1 from epochs 1 to 149 and
LR = 0.01 from epochs 150 to 200.

Table I summarizes the proposed architecture by stating the
value of each of the kernel sizes and the number of filters
employed in each CONV layer. The number of kernels n( j )

l
of each CONV layer depends on the initial selected A and α
values, being A the number of spectral bands (N in our case)
and α = 50.

III. EXPERIMENTS

A. Hyperspectral Data Sets

Four well-known hyperspectral data sets have been consid-
ered in the experimental part of the work: Indian Pines (IP),
University of Pavia (UP), Salinas Valley (SV), and Kennedy
Space Center (KSC). Table II shows a brief summary of
the considered HSI images, including the number of samples
per class, as well as the available ground-truth information.
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TABLE I

PROPOSED NETWORK TOPOLOGY. AVERAGE POOLING HAS A KERNEL
OF 2 × 2 WITH STRIDE 2, AND FC LAYER HAS Nclass NEURONS,

BEING Nclass THE NUMBER OF CLASSES OF EACH DATA SET

Additionally, a more detailed description of each image is
given as follows.

1) IP: The IP data set (Table II) was gathered in 1992 by
the Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) sensor [63] over an agricultural area
in Northwestern Indiana. Specifically, it covers a set
of agricultural fields with regular geometry and also
irregular forest areas. The selected scene contains
145 × 145 pixels, with a total of 224 spectral bands in
the wavelength range from 400 to 2500 nm, and spatial
resolution of 20 meters per pixel (mpp). After remov-
ing four null bands and other 20 bands corrupted by
the atmospheric water absorption effect, the remaining
200 bands have been considered for the experiments.
Moreover, about half of the data (10 249 pixels from a
total of 21 025) contains ground-truth information in the
form of a single label from 16 different classes.

2) UP: The UP image (Table II) was acquired by
the Reflective Optics System Imaging Spectrometer
sensor [64] over the campus at the UP, Northern Italy.
This data set mainly contains an urban environment
with multiple solid structures (asphalt, gravel, metal
sheets, bitumen, and bricks), natural objects (trees,
meadows, and soil), and shadows. After discarding the
noisy bands, the considered scene contains 103 spectral
bands, with a size of 610 × 340 pixels in the spectral
range from 0.43 to 0.86 μm and with spatial resolution
of 1.3 mpp. About a 20% of the pixels (42 776 of
207 400) contain ground-truth information from nine
different class labels.

3) SV: The SV scene (Table II) was collected by the
224-band AVIRIS sensor over the SV, CA, USA, and it
is characterized by a spatial resolution of 3.7 mpp. The
area covered comprises 512 lines by 217 samples. As in
the case of the IP data set, we discard the 20 water
absorption bands, i.e., [108–112], [154–167], and 224.
This image was only available as at-sensor radiance data,
and includes a total of 16 ground-truth classes, such as
vegetables, bare soils, and vineyard fields.

4) KSC: The KSC data set (Table II) was collected by the
AVIRIS instrument over the KSC in FL, USA, in 1996.
Once noisy bands have been removed, the resulting
image contains 176 bands with a 512 × 614 size,
ranging from 400 to 2500 nm and with 20 mpp spatial
resolution. A total of 5122 pixels labeled in 13 classes,
representing different land-cover types, are considered
for classification purposes.

B. Experimental Configuration

The proposed approach has been compared to a total
of 10 different classification methods available in the literature:
1) SVM with radial basis function kernel [65]; 2) RF; 3) MLP;
4) extreme learning machine (ELM) [66]; 5) kernel ELM
(KELM) [67]; 6) 1-D CNN; 7) 2-D CNN; 8) 3-D-CNN;
9) spectral–spatial ResNet (SSRN) [48]; and 10) deep fast
CNN (DFCNN) [50]. All hyperparameters have been fixed in
an optimal way for each method.

More specifically, the SVM, RF, MLP, ELM, KELM, and
1-D-CNN are spectral classifiers. 2-D-CNN is a spatial-based
method, where PCA has been applied over the hyperspec-
tral data in order to extract one principal component (i.e.,
it reduces the number of spectral bands N to 1), and 3-D-CNN,
SSRN, DFCNN, together with the proposed approach are
spectral–spatial techniques. Considering all these classifica-
tion methods and the aforementioned data sets, we provide
four different experiments to validate the performance of
the proposed approach with respect to standard classifiers
(experiment 1), considering different training data percentages
(experiment 2), and drawing comparisons with two recent
CNN-based spectral–spatial classifiers (experiments 3 and 4).

1) In our first experiment, the proposed network is com-
pared with the standard SVM, RF, MLP, 2-D-CNN, and
3-D-CNN classification methods using a training set
made up of 15% of the available labeled data for the
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TABLE II

NUMBER OF SAMPLES OF THE IP, UP, AND SV HSI DATA SETS

IP, UP, and SV data sets. Additionally, the input spatial
size is fixed to N ×11×11 for the 2-D-CNN, 3-D-CNN,
and the proposed model, being N the number of spectral
bands.

2) In our second experiment, we compare the classification
accuracy of the proposed approach with regards to
that obtained by spectral methods, in particular SVM,
RF, MLP, ELM, KELM, and 1-D-CNN, by considering
different training percentages over the IP and UP data
sets, following the same configuration proposed in [7].
Specifically, we use 5%, 10%, 15%, 20%, and 25%
training percentages and set the input patch size of the
proposed approach to N × 7 × 7.

3) In our third experiment, the proposed approach is com-
pared to the SSRN spectral–spatial classifier using four
different spatial sizes, i.e., 5 × 5, 7 × 7, 9 × 9, 11 × 11,
and the training configuration considered in [48]. That
is, we consider 20% of the available labeled data for the
IP and KSC data sets, and 10% of the available training
data for the UP data set.

4) Finally, the fourth experiment compares the proposed
approach with the DFCNN network using three different
spatial sizes, 9×9, 15×15, and 19×19, and we use the
training configuration considered in [50]. Specifically,
the number of randomly selected training samples per
labeled class is: 30, 150, 150, 100, 150, 150, 20, 150,

15, 150, 150, 150, 150, 150, 50, and 50 in the case of
IP, and 548, 540, 392, 542, 256, 532, 375, 514, and 231
for UP.

In order to assess the results, three widely used quantitative
metrics are used to evaluate the classification performance:
overall accuracy (OA), average accuracy (AA), and Kappa
coefficient. Regarding the hardware environment in which
we have run the experiments, it is composed of the Sixth
Generation Intel Core i7-6700K processor with 8M of Cache
and up to 4.20 GHz (4 cores/8 way multi-task processing),
40 GB of DDR4 RAM with a serial speed of 2400 MHz,
a GPU NVIDIA GeForce GTX 1080 with 8 GB GDDR5X of
video memory and 10 Gb/s of memory frequency, a Toshiba
DT01ACA HDD with 7200RPM and 2TB of capacity, and an
ASUS Z170 progaming motherboard. Additionally, the used
software environment is composed of Ubuntu 16.04.4 x64 as
operating system, CUDA 8 and cuDNN 5.1.5, Python 2.7 as
programming languages.

C. Experimental Results

1) Experiment 1: Tables III–V present the classification
results for IP, UP, and SV data sets, corresponding to our first
experiment. Specifically, the first column of each table indi-
cates the corresponding data set class; the next five columns
show the results obtained by SVM, RF, MLP, 2-D-CNN, and
3-D-CNN classifiers, and the last column contains the result
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Fig. 4. (From left to right) (a) Achieved accuracy (vertical axis) versus employed computing time in seconds (horizontal axis) for the IP, Pavia University (PU),
and SV data sets. Total execution times of each compared algorithm for (b) IP, (c) PU, and (d) SV data sets. Blue and red bars: performance of the GPU and
CPU implementations, respectively.

TABLE III

CLASSIFICATION RESULTS FOR THE IP DATA SET USING 15% OF THE
LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL SIZE

TABLE IV

CLASSIFICATION RESULTS FOR THE UP DATA SET USING 15% OF THE

LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL SIZE

of the proposed approach. Additionally, the OA, AA, Kappa
coefficient, and computational time in seconds are provided in
the last four rows. It should be mentioned that MLP, 2-D-CNN,
3-D-CNN, and the proposed approach take advantage of
the GPU to accelerate the corresponding procedures. Also,
in Fig. 4, we can observe the latency and execution time results
of the proposed method.

2) Experiment 2: Fig. 5 shows the results obtained in
our second experiment, where different training percentages
are tested using IP and UP data sets. In particular, SVM,
RF, MLP, ELM, KELM, 1-D-CNN, and the proposed method
are tested considering 5%, 10%, 15%, 20%, and 25% of the
labeled data for training. It should be also mentioned that
Fig. 5 (left) contains the results for the IP data set, and Fig. 5
(right) contains the results for the UP data set.

3) Experiment 3: In addition to the global analysis con-
ducted in the first two experiments, we also conduct two
additional experiments to compare the proposed approach

TABLE V

CLASSIFICATION RESULTS FOR THE SV DATA SET USING 15% OF THE
LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL SIZE

Fig. 5. OA (%) for SVM, RF, MLP, ELM, KELM, 1-D-CNN, and the
proposed approach when considering different training percentages in (Left)
IP and (Right) UP data sets.

and two recent state-of-the-art spectral–spatial classification
networks. In this experiment, we compare our approach with
SSRN, which has been presented in [48]. Table VI provides
the classification results obtained by SSRN and the proposed
method. Specifically, the first column contains the considered
spatial input size, and the next three columns show the OA
for IP, KSC, and UP data sets, respectively. Note that we use
the same training configuration used in [48], that is, 20% of
the available labeled data for IP and KSC, and 10% of the
available labeled data for UP.

4) Experiment 4: Table VII shows the results of the com-
parison between the DFCNN method (presented in [50]) and
the proposed approach. In particular, three different spatial
sizes are considered for the IP and UP data sets. Note that
additional spatial configurations are not reported because the
proposed approach already provides an optimal result.

To conclude this section, Figs. 6–8 complete the experimen-
tal comparison by providing some of the classification maps
provided by the methods tested in the first experiment for the
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TABLE VI

OA (%) ACHIEVED BY THE SSRN METHOD [48] AND THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT INPUT SPATIAL SIZES

TABLE VII

OA (%) ACHIEVED BY THE DFCNN METHOD [50] AND THE PROPOSED

APPROACH WHEN CONSIDERING DIFFERENT INPUT SPATIAL SIZES

IP, UP, and SV data sets. As it can be observed, the proposed
method provides spatially consistent classification outputs with
well-delineated object borders and very few classification
interferers.

D. Discussion

According to the reported results, one of the first noticeable
points is the high classification accuracy that the proposed
approach is able to provide in the different considered sce-
narios. That is, the proposed network architecture achieves a
consistent precision improvement when considering not only
the standard spectral classification methods SVM, RF, MPL,
ELM, KELM, and 1-D-CNN but also the spatial approach
2-D-CNN and, most importantly, the spectral–spatial methods
3-D-CNN, SSRN, and DFCNN.

In Tables III–V, it is possible to observe that the proposed
approach provides the best average results as well as the
highest accuracy values for each individual class in the IP,
UP, and SV data sets. In particular, the average improvement
over the second best classifier, the spectral–spatial 3-D-CNN,
is +1.59, +2.31, and +1.83 for OA, AA, and Kappa metrics,
respectively. Additionally, the network presented in this paper
also shows a remarkable performance improvement when
considering different percentages of training data. According
to Fig. 5, the proposed approach obtains the highest accuracy
result for all the tested training data percentages in IP and
UP data sets. Besides, the proposed approach also tends to
converge faster to the maximum accuracy value than the rest
of the tested methods.

These results are also consistent with the corresponding
classification maps shown in Figs. 6–8. On the one hand,
spectral methods, such as SVM or MLP, tend to generate rather
noisy classification maps because they do not take into account
the spatial component when providing a pixel prediction.
On the other hand, spatial classifiers, i.e., 2-D-CNN, are prone
to alter some object shapes depending on the considered input
spatial size. Precisely, spectral–spatial classifiers work for
overcoming both the limitations. As we can see, the proposed

approach certainly provides the classification results that are
more similar with regards to the corresponding ground-truth
classification maps for IP, UP, and SV data sets. In addition,
it is possible to observe that the proposed method also reaches
a higher performance. That is, class boundaries are better
defined and background pixels are better classified accord-
ing to the actual ground-truth image content. For instance,
the classification map depicted in Fig. 7(h) shows that the
proposed approach provides a clean classification result for
the self-blocking bricks class in the UP scene, while noise and
outliers are also significantly reduced with respect to the rest
of the methods.

From this initial comparison, we can note that
spatial–spectral classification algorithms are those which
provide the best performance over all the considered data
sets. More specifically, the RF spectral classifier obtains
the lowest average OA in the conducted experiments
(87.11%), followed by the spatial 2-D-CNN (90.22%) and the
spectral MLP (91.32%) methods. Besides, the spectral SVM
approach shows, on average, a slightly better performance
(91.86%). Nonetheless, the performances provided by the
spectral–spatial methods, i.e., the 3-D-CNN network (98.17%)
and the proposed approach (99.77%), are significantly higher.
Precisely, this is the reason why we conduct a more detailed
performance comparison between the proposed approach and
two recent spectral–spatial methods, SSRN, and DFCNN.

Regarding the SSRN performance comparison, Table VI
shows some important points that deserve to be mentioned.
Although both methods (SSRN and the proposed one) improve
the classification accuracy when considering a higher input
spatial size, the proposed approach provides a substantial
precision gain, especially with smaller input spatial sizes. That
is, the proposed approach pyramidal architecture provides the
advantage of extracting more feature maps as the network
residual units are deeper; therefore, it is able to better exploit
the information contained within an input HSI cube in order to
learn more robust spectral–spatial representations. As a result,
the proposed method provides a more accurate (as well as
robust) classification result than the SSRN. In other words,
the proposed method consistently achieves higher accuracy
results and lower standard deviation values than the SSRN,
which means that the class uncertainty is significantly reduced,
no matter the considered spatial size. Note that SSRN obtains
some standard deviation values relatively large considering the
high OA. For instance, it is the case of the KSC data set
when considering a 11×11 spatial size. As we can see, SSRN
obtains a 99.57 ± 0.54% OA, whereas the proposed approach
result, 99.79 ± 0.11%, achieves even a higher accuracy with a
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Fig. 6. Classification maps for the IP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) Classification maps
corresponding to Table III. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

Fig. 7. Classification maps for the UP data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) classification maps
corresponding to Table IV. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

Fig. 8. Classification maps for the SV data set. (a) Simulated RGB composition of the scene. (b) Ground-truth classification map. (c)–(h) classification maps
corresponding to Table V. Note that the overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

five times lower standard deviation. In general, the proposed
approach exhibits a better classification performance than
SSRN for IP, KSC, and UP data sets, because it is able to
obtain higher accuracy results with lower standard deviation
values, which also shows that the proposal is robust in the
presence of variability and noise.

A similar trend can be also observed in the reported
DFCNN comparison (Table VII). In particular, the proposed
approach obtains better OA than DFCNN for IP and UP data
sets when considering 9 × 9, 15 × 15, and 19 × 19 spatial
sizes, respectively. Taking all these observations into account,
it is possible to state that the proposed approach provides
a more accurate and robust classification result than all of
the other tested methods. Even though the spectral–spatial
classifiers 3-D-CNN, SSRN, and DFCNN have shown to
obtain relatively high classification accuracies, the proposed
architecture provides a more effective scheme to reduce the
uncertainty when uncovering spectral–spatial features. That
is, increasing the feature map dimension at all CONV layers,

grouped in pyramidal residual blocks, allows the proposed
approach to involve more locations as the network depth
increases while balancing the workload among all units and
preserving the time complexity per layer. As a result, the diver-
sity of high-level spectral–spatial attributes can be gradually
increased across layers to enhance the capability of the net-
work to manage remotely sensed HSI data.

The obtained results also demonstrate that the proposed
technique provides a remarkable quantitative improvement,
which indicates that the presented spectral–spatial architecture
is able to generate more distinctive features to effectively clas-
sify remotely sensed HSIs, achieving the best accuracy perfor-
mance for all the conducted experiments (see Tables III–VII)
and the most robust behavior when dealing with different
input spatial sizes (see Tables VI and VII). The effectiveness
of the proposed network (when compared with regular CNN
models) lies in its architecture, which progressively increases
the feature map dimension at all residual units, allowing the
proposed approach to involve more 3-D volume locations as
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the network depth increases. This fact eventually promotes
uncovering a larger variety of high-level spectral–spatial fea-
tures, balancing the workload among units to facilitate the
network training process, and also allowing the model to
reduce the declining-accuracy phenomenon when considering
significantly deep networks. Based on the reported results
with different HSI data sets, multiple training percentages, and
several input spatial sizes, we can conclude that the proposed
technique is able to better exploit the spectral–spatial informa-
tion contained in an HSI data cube, thus maintaining a good
quantitative performance even with small kernel spatial sizes.

According to the computational times reported
in Tables III–V, it is also possible to highlight some
important aspects among the tested methods. On average,
SVM and RF classifiers are the most time-consuming
methods, followed by the proposed approach, 2-D-CNN and
3-D-CNN. Finally, MLP has shown to be the most efficient
technique in computational terms. Even though the adopted
SVM and RF implementations do not take advantage of GPU
acceleration, their corresponding optimal parameter search
tasks are computationally demanding processes which highly
affect the overall computational time. In the case of the
tested neural network-based methods, the pyramidal residual
blocks of the proposed approach logically require a larger
amount of computational power than simpler architectures.
Specifically, the proposed approach computational time is,
on average, a 25% and 43% higher than the corresponding
2-D-CNN and 3-D-CNN costs. Despite the fact that the
proposed approach obtains a higher computational time
than MLP, 2-D-CNN, and 3-D-CNN networks, the resulting
cost increase is moderate considering the high number of
operations required by the proposed model when compared
to simpler architectures. That is, the proposed network is
able to find spectral–spatial relationships useful to obtain
a relatively more effective model convergence as well as a
remarkable classification improvement. Looking at Fig. 4,
we can observe in Fig. 4(a) that the proposed approach
takes relatively little time to reach a good accuracy (around
25 s), while in Fig. 4(b)–(d), we show the total execution
time of each compared algorithm, being SVM and RF the
two slowest methods. This is mainly due to the parameter
searching process (which is performed in the CPU), which
has a strong influence in the computation times. In contrast,
the MLP is the fastest GPU-implemented classifier, while the
proposed technique is one of the slowest GPU-implemented
methods due to its more complex architecture, followed by the
spatial CNN. Finally, it is also important to highlight that the
proposed approach generally exhibits a lower computational
time than SSRN according to the results reported in [48].

IV. CONCLUSION

This paper presents a novel CNN-based deep network
architecture specifically designed to manage large
hyperspectral data cubes. In particular, the proposed
new hyperspectral pyramidal ResNet pursues to improve
the straightforward residual model formulation by better
exploiting the potential of the information available on each
unit. The proposed architecture gradually increases the feature

map dimension step by step at each pyramidal bottleneck
residual blocks, composed of three convolutional layers, as a
pyramid, in order to involve more feature map locations as
the network depth increases, while balancing the workload
among all units and preserving the time complexity per layer.
The experimental part of the work, conducted over four
well-known hyperspectral data sets and using 10 different
classification methods, reveal that the new hyperspectral
pyramidal residual model is able to provide a competitive
advantage over state-of-the-art classification methods.

One of the main conclusions that arises from this paper
is the relevance of using spectral–spatial information when
classifying the hyperspectral data. In this regard, the newly
proposed approach is able to uncover highly descriptive
spectral–spatial classification features throughout the imple-
mented network convolutional filters. That is, our adopted
strategy for gradually increasing the feature map dimension at
all residual-based units allows us to consider a higher variety
of spectral–spatial attributes as the network depth increases,
because more image locations can be simultaneously consid-
ered. Eventually, this fact leads to classification improvements
by means of the combined spectral–spatial features, which help
to better discern among classes in multiple HSI data sets and
experimental settings. Although other recent approaches, such
as SSRN and DFCNN, exhibit very good classification per-
formance, the new proposed hyperspectral pyramidal residual
model is able to outperform their results and also to provide
a more robust behavior when considering different input
spatial sizes. Another important point is related to the amount
of data used for training purposes. Although deep learning
methods usually require a significant amount of the labeled
data, the proposed approach has shown to provide consistent
performance improvements with respect to other state-of-the-
art models using different percentages of training data.

Despite the good results provided by the proposed approach,
there are several unresolved issues that may present challenges
over time. In particular, our future work will be aimed at the
following directions: 1) reducing the computational complex-
ity of the proposed HSI classification network by developing
new methods to optimize the model parameters; 2) developing
more efficient parallel implementations of the proposed model;
and 3) integrating advanced data augmentation and active
learning schemes into the proposed classification framework.
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