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Endmember Extraction From Hyperspectral Imagery
Based on Probabilistic Tensor Moments
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Abstract— This letter presents a novel hyperspectral endmem-
ber extraction approach that integrates a tensor-based decom-
position scheme with a probabilistic framework in order to take
advantage of both technologies when uncovering the signatures
of pure spectral constituents in the scene. On the one hand,
statistical unmixing models are generally able to provide accurate
endmember estimates by means of rather complex optimization
algorithms. On the other hand, tensor decomposition techniques
are very effective factorization tools which are often constrained
by the lack of physical interpretation within the remote sens-
ing field. In this context, this letter develops a new hybrid
endmember extraction approach based on the decomposition
of the probabilistic tensor moments of the hyperspectral data.
Initially, the input image reflectance values are modeled as a
collection of multinomial distributions provided by a family of
Dirichlet generalized functions. Then, the unmixing process is
effectively conducted by the tensor decomposition of the third-
order probabilistic tensor moments of the multivariate data.
Our experiments, conducted over four hyperspectral data sets,
reveal that the proposed approach is able to provide efficient and
competitive results when compared to different state-of-the-art
endmember extraction methods.

Index Terms— Endmember extraction, hyperspectral unmix-
ing, statistical models, tensor decomposition.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) is one of the most
important technologies to address many different appli-

cations within the remote sensing field [1]. In general, HSI
sensors capture the Earth surface using hundreds of narrow
and contiguous bands, providing valuable spectral and spatial
information of the target scene [2]. Nonetheless, the higher
the spectral precision of the sensor, the smaller the spatial
resolution of the recorded data, since the amount of pho-
tons captured at each band logically decreases [3]. In this
context, hyperspectral unmixing (HU) plays a fundamental
role to uncover subpixel information from the sensed spec-
tra because HU aims at decomposing HSI imagery into a
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collection of pure spectral signatures (endmembers) and a
set of fractional abundances that represent pixel endmember
proportions. From geometrical techniques to statistical models,
different paradigms have been successfully applied to unmix
remotely sensed data [4]. Geometrical approaches exploit the
HSI data geometry to estimate the spectral signatures and
fractional abundances. The vertex component analysis (VCA)
[5] is one of the most popular and effective geometrical
methods. Specifically, VCA assumes that the endmembers of
a given HSI scene define a simplex of minimum volume
that encloses the data. In this way, spectral signatures can
be efficiently estimated using convex set geometry. Another
relevant approach is the minimum volume simplex analysis
(MVSA) [6], which introduces some additional constraints on
the abundance fractions to increase the model robustness to
the absence of pure pixels and also to the presence of noise.
Statistical methods follow a probabilistic scheme to model
endmembers and abundances as probability distributions, thus
accounting for a higher data variability. For instance, in [7]
Nascimento and Bioucas formulate fractional abundances as
mixtures of Dirichlet densities. Similarly, other authors model
the endmember variability using different distributions, such
as the Gaussian distribution [8] or topic modeling [9]. Despite
the remarkable performance achieved by these methods, alter-
native research work has also been conducted considering
the data decomposition nature of the HU problem. In this
sense, several papers in the literature adopt the nonnega-
tive matrix factorization (NMF) approach [10], which aims
at decomposing the input HSI data into two multiplicative
factors, i.e., endmembers and abundances. For instance, this
is the case of the work presented in [11], where the authors
introduce different regularization constrains over the elemental
NMF scheme. Analogously, Li et al. [12] propose a robust
collaborative NMF (CNMF) approach, which is capable of
working with an overestimated number of endmembers. As an
alternative to the NMF scheme, some recent works show
the advantages of considering a tensor-based decomposition
framework, which allows preserving more spatial information,
since the HSI data can be managed from a 3-D perspective.
In this regard, Qian et al. [13] present a matrix-vector NMF
(MVNTF) approach which is, to the best of our knowledge,
the first method that employs a tensor-based scheme for HU.
Other authors, such as Feng and Wang [14], propose some
additional constraints over the seminal approach that provides
certain performance advantages.With the recent emergence of
multilinear algebra to represent remotely sensed HSI data, HU
methods no longer depend on traditional matrix decomposi-
tion techniques to uncover spectral signatures and fractional
abundances. However, the lack of physical interpretation of
the factorization process itself is often a conceptual limitation
that still forces current decomposition-based HU approaches
to impose additional restrictions, e.g., the sum-to-one and
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nonnegativity abundance constraints [12]–[14]. In this sense,
some recent statistical methods, such as [15]–[17], show the
advantages of considering a probabilistic framework to deal
with remotely sensed HSI imagery. In particular, assuming
that the input data are sampled from a probability distribution
makes the sum-to-one and nonnegativity conditions inherent
to the solution because the output result naturally belongs
to the corresponding probability simplex [9], [18]. In this
scenario, this letter proposes a new endmember extraction
approach which aims at combining a tensor-based decom-
position scheme with a probabilistic framework in order to
take advantage of both technologies when unmixing remotely
sensed HSI data. On the one hand, the latest research based
on tensors [13], [14] reveals that this kind of factorization is
able to provide very competitive and efficient results within
the HU field. Nonetheless, the tensor decomposition approach
does not show a literal meaning when estimating spectral sig-
natures, which may eventually limit its physical interpretation
while forcing some additional constraints. On the other hand,
the probabilistic interpretation of the unmixing process [9]
makes the probabilistic scheme very useful to represent the
HSI data, since the image pixels are probabilistically distrib-
uted over the endmember space. In order to achieve this goal,
we initially formulate the HU problem considering that the
HSI data can be effectively modeled according to the multino-
mial distributions provided by a family of Dirichlet generalized
functions. Then, the unmixing process is conducted using the
third-order probabilistic tensor moments of the multivariate
data. Our experiments, conducted over four HSI data sets,
show the proposed approach exhibits competitive performance
when compared to different state-of-the-art methods available
in the literature.

II. METHODOLOGY

A. Endmember Extraction Formulation

Let X ∈ R
B×N be a HSI image with N pixels and B

bands. Let K be the number of endmembers of X. The
endmember extraction task consists of estimating the inherent
set of spectral signatures from X as S = {s1, . . . , sK } ∈ R

B×K .
Considering the linear mixing model [4], it is possible to
characterize each pixel X(i) as a mixture of K endmembers

X(i) =
K∑

k=1

ska(i)
k (1)

where a(i)
k ∈ R denotes the fractional abundance of sk in X(i).

In order to guarantee that fractional abundances lie on the
corresponding K -dimensional probability simplex �K−1, let
us assume that the abundance vectors a = {a(1), . . . , a(N)} ∈
R

K×N are independently drawn from a Dirichlet distribution
with a concentration parameter α = {α1, . . . , αK }, being α0 =∑K

k=1 αk . Consequently, the contribution of the endmembers
to the image bands at the i th pixel can be modeled using a
multinomial distribution with parameters a(i), and the corre-
sponding pixel reflectance values can then be derived from the
endmember vectors sk ∈ �B−1. The way we encode the HSI
data is by expressing each 1/216 reflectance fraction of each
band as a binary vector [19]. Let {v1, v2, . . . , vB} ∈ R

K×B be
the standard coordinate basis for R

B . Then, we characterize
the F reflectance fractions of X as a set of column vectors
{x1, x2, . . . , xF } ∈ R

B×F , which indicate the activation of
the HSI bands. In other words, each reflectance fraction x f

of X is expressed by the standard coordinate basis vector v j
corresponding to the band where the fraction x f was acquired.
Note that this notation allows expressing the joint probabilities
of the HSI reflectance fractions using the cross-moments of
these vectors.

B. Probabilistic Tensor Cross-Moments

With the aforementioned problem formulation in mind, let
us now define some properties of the hidden moments of the
HSI data, following the general tensor decomposition theory
for learning latent variable models [20]. Considering that the
endmember mixture a is drawn from a Dirichlet distribution,
the expected value of the kth element of this vector can be
defined as follows:

E[ak] = αk

α0
. (2)

According to the aforementioned notation, the expected value
of a reflectance fraction x1∈ R

B conditioned to the endmember
mixture vector a can be represented as

E[x1|a] =
K∑

k=1

skak . (3)

Equation (3) shows the relationship between the observed
data x1 and the spectral signatures sk . However, it requires
knowledge on the abundance vectors a, which are logically
unknown. As a result, it can be considered the marginal
expectation E[x1] to derive the following expression:

E[x1] = E[E[x1|a]] =
K∑

k=1

αk

α0
sk . (4)

This equation reveals that the moments of the observable data
are useful to recover the endmember vectors sk . Nonetheless,
the moments of a single reflectance fraction x1 do not provide
information to estimate spectral signatures that cover the
complete HSI domain. For this reason, we consider the cross-
moments of pairs of reflectance fractions as follows:

E[x1 ⊗ x2] = E[Sa ⊗ Sa] (5)

where the symbol ⊗ denotes the Kronecker product. Anal-
ogously, the third-order cross-moment of the data can be
formulated as

E[x1 ⊗ x2 ⊗ x3] = E[Sa ⊗ Sa ⊗ Sa]. (6)

Once the cross-moments of the input reflectance data are
represented in terms of S and a, it is also possible to derive
a closed-form expression due to the assumption that the
abundance vectors a are drawn from a Dirichlet distribution.
According to the findings reported by Anandkumar et al. [21],
our observed reflectance data cross-moments could be explic-
itly written in terms of α and S as follows:

E[x1 ⊗ x2]
= 1

α0(α0 + 1)

(
(Sα ⊗ Sα)+

K∑
k=1

αk(sk ⊗ sk)

)
(7)

E[x1 ⊗ x2 ⊗ x3]
= 1

α0(α0 + 1)(α0 + 2)
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×
(

(Sα ⊗ Sα ⊗ Sα)

+
K∑

k=1

αk(sk ⊗ sk⊗Sα+sk ⊗ Sα ⊗ sk+Sα⊗sk ⊗ sk)

+
K∑

k=1

2αk(sk ⊗ sk ⊗ sk)

)
. (8)

After isolating the last two terms in [7] and [8] and apply-
ing [20, Th. 3.5], the probabilistic tensor moments can be
expressed as a linear combination of sk

M1 =
K∑

k=1

αk

α0
sk (9)

M2 =
K∑

k=1

αk

α0(α0 + 1)
(sk ⊗ sk) (10)

M3 =
K∑

k=1

2αk

α0(α0 + 1)(α0 + 2)
(sk ⊗ sk ⊗ sk). (11)

C. Tensor Orthogonalization

In order to uncover the spectral signatures S from the
defined probabilistic tensor cross-moments, it is necessary
to express these moments as orthogonal matrices, to enable
the use of regular tensor decomposition techniques [20]. Let
us assume that there is a matrix W which orthogonalizes
the second moment as follows: M2(W, W) =WT M2W = I ,
where I represents the identity matrix and T is the transpose
operator. In this scenario, the second noncentral moment can
be defined by the following expression:

M2(W, W)

= WT
( K∑

k=1

αk

α0(α0 + 1)
(sk ⊗ sk)

)
W

=
K∑

k=1

WT
(√

αk

α0(α0 + 1)
sk

)
⊗
(√

αk

α0(α0 + 1)
sk

)T

W

=
K∑

k=1

φk ⊗ φT
k = I. (12)

As (12) shows, φk =WT((αk/(α0(α0 + 1))))1/2sk is a set of
orthonormal vectors, since it orthogonalizes M2. In addition,
sk can be recovered from φk , because it is a linear combination
of sk and W terms. Similarly, multiplying the third-order
probabilistic moment by this ortogonalization matrix, we can
obtain the following expression:

M3(W, W, W)

= (WT ⊗WT ⊗WT)M3

= (WT)⊗3
( K∑

k=1

2αk

α0(α0 + 1)(α0 + 2)
(sk ⊗ sk ⊗ sk)

)

=
K∑

k=1

2
√

α0(α0 + 1)

(α0 + 2)
√

αk
(φk ⊗ φk ⊗ φk). (13)

In this letter, we efficiently compute the orthogonalization
matrix by using the singular value decomposition (SVD) over
the empirical second-order moments as M̂2 = A�AT, being

Algorithm 1 TPM-Based Endmember Extraction
Input x: Quantized HSI data (16-bit)
Input K : Number of endmembers
Output S: Estimated spectral signatures

1: Compute the empirical moments of x: M̂∗
2: Estimate Ŵ using SVD over M̂2: Ŵ← A�− 1

2

3: Define the third-order tensor: T ← M3(Ŵ, Ŵ, Ŵ)
4: Conduct the tensor decomposition: TPM(T , L, N)
5: Recover the spectral signatures: S← Eq. (15)

6: procedure TPM(T , L = 100, N = 100)
7: for τ = 1 to L do
8: θ0← Random init. from the R

K unit sphere
9: for t = 1 to N do

10: θt ← Compute the TPM update [Eq. (14)]
11: end for
12: end for
13: Let τ ∗ = arg minτ∈[L] T (θt , θt , θt )
14: Carry out N additional updates over θτ∗ [Eq. (14)]
15: end procedure

Ŵ = A�− 1
2 . After the process, the dimensionality of this

third-order tensor can be reduced from R
B×B×B to R

K×K×K .

D. TPM for Endmember Estimation

The so-called tensor power method (TPM) decomposition
approach [20] is used in this letter to estimate the set of
spectral signatures from the corresponding eigenvalues (λ) and
eigenvectors (θ ). Initially, the aforementioned transformation
for tensor orthogonalization and dimensionality reduction is
conducted to enable the use of the TPM decomposition over
the input HSI data. Being W the estimated orthogonalization
matrix, we define the tensor T = M3(W, W, W) to recover S
by applying a power-deflation approach over T . Specifically,
TPM starts with θ0 randomly sampled from the unit sphere.
After several iterations, the power expression update shown
in (14) reveals that the largest initialization component domi-
nates the whole iterative process. Note that the T (·) operand
generates a tensor by applying the Kronecker product to its
arguments

θt+1 = T (I, θt , θt )

‖T (I, θt , θt )‖ . (14)

Once the θk parameter is approximated, λk can be recovered
from T (θk, θk, θk) = λk . That is, for each pair (θk, λk), it is
possible to recursively compute the tensor T − (λkθk ⊗ θk ⊗
θk). Eventually, considering that the sk parameter is in the
column space of W, the final endmember estimation can be
conducted according to (15). Algorithm 1 shows a pseudo-
code description of the considered TPM-based procedure.

sk = α0 + 2

2
λ̂kŴTθ̂k . (15)

III. EXPERIMENTS

A. Data Sets

Four HSI data sets have been considered in this letter:
Synthetic, Samson, Jasper, and Urban. These images have
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Fig. 1. Qualitative endmember assessment for the four best methods over the Samson data set. Note that the corresponding ground-truth spectral signatures
are plotted using dashed lines and the obtained SAD results are provided in brackets. (a) VCA (0.0634). (b) DEpLSA (0.0427). (c) SCM (0.0723). (d) Proposed
(0.0366).

been selected because they are used in multiple reference
works in spectral unmixing (see [5], [22]–[25]). Besides, their
corresponding ground-truth endmembers are publicly available
from https://goo.gl/23ue7v.

1) Synthetic [5] is a simulated HSI scene with 36 × 36
pixels and 224 spectral bands. This simulated data com-
prises three endmembers which have been selected from
the U.S. Geological Survey (USGS) library: Actinolite,
Ammonio, and Erionite. This data set has been generated
considering an additive Gaussian noise level of 30 dB
(SNR), and without including any pure spectral pixels.

2) Samson [23] is a real HSI scene with 95 × 95 pixels
and 156 spectral bands, covering from 401- to 889-nm
wavelengths. There are three materials in the Samson
scene, i.e., soil, tree, and water.

3) Jasper [24] is another real data set which contains
100× 100 pixels and 198 spectral bands, ranging from
400 to 2500 nm. The Jasper scene contains a total of
four endmembers, i.e., road, soil, tree, and water.

4) Urban [25] is a real image with 307 × 307 pixels and
162 bands. These data include four different materials,
i.e., asphalt, grass, roof, and tree.

B. Experimental Settings

The performance of our newly proposed approach in the
task of uncovering pure spectral signatures from remotely
sensed HSI data has been tested against different unmixing
methods available in the literature. Specifically, the follow-
ing endmember extraction algorithms have been considered:
VCA [5], MVSA [6], NMF [11], CNMF [12], dual-depth
sparse probabilistic latent semantic analysis (DEpLSA) [9],
spatial compositional model (SCM) [26] and the proposed
approach. All the tested methods have been used considering
a given number of endmembers (K ) and their corresponding
default parameter configurations. Note that K could be also
estimated using any subspace identification method [4]. Since
this letter is just focused on assessing the spectral signatures,
null abundance sparsity constraints have been used in NMF
and DEpLSA methods. In the case of the proposed approach,
a symmetric Dirichlet concentration parameter α0 = 0.2 has
been adopted as a global setting. Regarding the evaluation
protocol, the spectral angle distance (SAD) has been employed
as a quantitative metric.

C. Results and Discussion

Table I presents the SAD quantitative assessment for the
considered unmixing methods (in columns) and data sets (in
rows). Note that the last row for each data set contains the
corresponding average results and the last row of the table

TABLE I

SAD ENDMEMBER ASSESSMENT (DATA SETS IN ROWS AND

UNMIXING METHODS IN COLUMNS)

provides the average computational time. Fig. 1 also provides a
qualitative evaluation of the four best methods for the Samson
collection. In this case, the corresponding ground-truth spectral
signatures are visualized using dashed lines.

According to the reported results, it is possible to highlight
some important observations. The first noteworthy point is
related to the global quantitative performance obtained by the
tested methods. As Table I shows, VCA, DEpLSA, and SCM
(together with the proposed approach) provide competitive
unmixing results for the considered HSI collections. In the
case of the Synthetic and Samson scenes, DEpLSA and VCA
exhibit a remarkable spectral precision when extracting spec-
tral signatures. However, the proposed approach obtains the
best reduction in terms of angular deviation between the esti-
mated endmembers and the corresponding ground-truth ones,
being 0.022 and 0.016 radians the improvement over VCA
and DEpLSA, respectively. When considering the Jasper data
set, DEpLSA, the proposed approach and SCM are the three
best methods, obtaining 0.152, 0.194, and 0.235 average SAD
values. Finally, the unmixing results in the Urban collection
reveal that the proposed approach is the best method, followed
by DEpLSA and SCM (for which the SAD is increased
0.027 and 0.039 radians, respectively). Another relevant point
arises when analyzing the quantitative endmember results in
more detail. As it is possible to observe in Table I, CNMF,
VCA, DEpLSA, SCM, and the proposed approach are all able
to produce some endmember estimates which are the most
similar to the corresponding groundtruth spectral signatures
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in some cases. However, the proposed approach achieves the
most consistent and robust results, since it frequently obtains
the best endmember estimation across the all considered HSI
images. The qualitative results displayed in Fig. 1 support this
observation. More specifically, the proposed approach achieves
the most accurate estimation for the water endmember while
maintaining a competitive precision for the rest of the spectral
signatures. Regarding the computational time, the presented
endmember extraction method also exhibits a remarkable
performance, being the second most efficient method and sig-
nificantly better than regular statistical approaches. In general,
estimating the endmembers of a given HSI scene raises the
challenge of uncovering the most spectrally pure components
from mixed data, where the spectral properties of the materials
can easily be masked. As a result, HU methods work for miti-
gating the ill-posed nature of the material dissociation problem
by imposing some constraints and assumptions which even-
tually relieve the uncertainty when uncovering pure spectral
signatures. According to the conducted experiments, DEpLSA
and SCM rank among the most effective methods. In this
sense, the proposed approach considers an analogous statistical
perspective, but using a rather different unmixing approach
based on tensor moments, which allows us to estimate very
competitive endmembers using an unconstrained tensor-based
decomposition technique. As a result, the proposed approach
allows us to avoid the use of (computationally demanding)
optimization algorithms while achieving the benefits provided
by a statistical basis.

IV. CONCLUSION AND FUTURE WORK

This letter introduces an approach to effectively uncover
pure spectral signatures from HSI data using a new probabilis-
tic tensor moment strategy. Whereas conventional statistical
models generally provide remarkable unmixing performance
using rather complex optimization algorithms, the latest
research on tensors points out that this kind of technol-
ogy is able to obtain competitive results using simpler fac-
torization procedures. In this context, our newly proposed
approach integrates a tensor-based decomposition scheme with
a probabilistic unmixing framework to take advantage of both
technologies when estimating endmembers. The conducted
experiments reveal the proposed approach exhibits competi-
tive performance when compared to different state-of-the-art
methods available in the literature. Thus, the main conclusion
that arises from this work is the potential of the considered
third-order probabilistic tensor moments to effectively uncover
pure spectral signatures from HSI data. In future, we plan
to extend this work to estimate both spectral signatures and
fractional abundances from a probabilistic tensor-based per-
spective. We will also conduct a comparison with traditional
tensor-based unmixing methods.
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