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Abstract— Hyperspectral anomaly detection is one of the most
active topics in hyperspectral image (HSI) analysis. The fine
spectral information of HSIs allows us to uncover anomalies
with very high accuracy. Recently, an intrinsic image decomposi-
tion (IID) model has been introduced for low-rank IID (LRIID)
in multispectral images. Inspired by the LRIID, which is able
to effectively recover the reflectance and shading components
of the multispectral image, this article adapts the LRIID for
obtaining the reflectance component of HSIs (which is the key
feature for the discrimination of different objects). In order to
exploit the reflectance component, we also propose a new dual
window density (DWD)-based detector for anomaly detection,
which is based on the idea that anomalies are usually rare
pixels and, thus, exhibit low density in the image. The density
analysis of DWD is intended not only to circumvent the Gaussian
assumption regarding the distribution of HSI data, but also
to mitigate the contamination of background statistics caused
by anomalies. The dual window operation of our DWD is
specifically designed to adaptively calculate the density of each
pixel under test, so as to identify anomalies with nonspecific
sizes. Our experimental results, obtained on a database of real
HSIs including Airport, Beach, and Urban scenes, demonstrate
the superiority of the proposed method in terms of detection
performance when compared to other widely used anomaly
detection methods.

Index Terms— Anomaly detection, density, dual
window, hyperspectral image (HSI), intrinsic image
decomposition (IID).
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) provide rich spectral
information about the materials on the ground surface,

reflecting diagnostic features that can be used to distinguish
between different substances. This enables the fact that ground
objects, that are undetectable in wideband remote sensing
images, can be uncovered in HSIs [1]. Owing to this advan-
tage, HSI anomaly detection has become a very active research
topic, aiming at identifying anomalous objects (which exhibit
distinct spectral characteristics from background and with low
probability of occurrence in the images) [2]–[6]. Since the
spectral information of the target is not known a priori in HSI
anomaly detection, it is generally very challenging to detect
such anomalies.

The Reed–Xiaoli (RX) detector [7] is one of the most typical
HSI anomaly detection methods. It estimates the mean and
covariance matrix of the global image, and then uses the
Mahalanobis distance from the mean as the detector output.
However, there are often some problems involved with the
direct use of RX: 1) using all the pixels to compute the
background statistics (the mean and the covariance matrix)
often leads to contamination, since the anomalous pixels
(which are greatly different from background) are also used
in the calculation and, consequently, the background statistics
are not completely accurate; 2) the RX assumes that the
background follows a Gaussian distribution, which may not be
realistic in HSI data [8]; and 3) the detection of anomalies may
be complicated [9]. As a result, several works have attempted
to improve the original RX version. Representative techniques
include the kernel-RX [10], [11], iterative-RX [12], segment-
RX [13], subspace-RX [14], regularized-RX [15], topology
based-RX [16], weighted-RX [17], and linear filter based-RX
[17], among others.

In addition, several local window-based methods have been
developed to address the aforementioned problems. In fact,
the local RX (LRX) is the most typical window-based
approach, in which the RX is conducted in a local window
around the pixel under test. The detection performance of
LRX is usually better than that of RX, since the background
pixels in local windows tend to be more compliant with the
Gaussian distribution. However, Since the LRX uses only a
single window, an unsatisfactory local distribution may be
obtained when the target size is large, and the contamination
of the background statistics may become even larger with the

0196-2892 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Antonio Plaza. Downloaded on November 27,2020 at 20:33:01 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5802-9496
https://orcid.org/0000-0002-1486-0496
https://orcid.org/0000-0003-3107-5446
https://orcid.org/0000-0002-9613-1659


8504 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 12, DECEMBER 2020

increase of the number of anomalies in the local background.
Several methods have been proposed to mitigate this issue. For
example, Kwon et al. [18] developed a dual window-based
eigenseparation transform (DWEST), which implemented the
RX using inner and outer windows. Liu and Chang [19] devel-
oped a nested spatial window-based target detection (NSWTD)
method, in which different spatial windows are nested to
detect anomalies. In [9], a multiple-window anomaly detec-
tion (MWAD) is designed by using a variety of windows
to detect anomalies with different sizes. Bo et al. [20] pro-
posed a local summation anomaly detection (LSAD) method,
which adopts a local summation strategy to combine multiple
local distributions from neighboring local windows. Moreover,
the collaborative representation-based detector (CRD) [21]
and the background joint sparse representation (BJSR)-based
detector [22] can also be considered as window-based anomaly
detectors. The CRD assumes that the background pixels can
be represented by their neighboring pixels in a local window
(whereas the anomalies cannot), and the BJSR can adaptively
select the most representative local background bases. More
recently, [23] uses an adaptive neighborhood set for the
RX detector (RX-ASSN), in which only spectrally similar
neighborhood pixels are considered.

Opposite to the aforementioned methods, other approaches
are based on adaptively segmenting the original image.
For instance, the cluster-based anomaly detector (CBAD)
[24] detects anomalies in different spectrally homogeneous
clusters rather than in fixed square windows, and the
binary partition tree (BPT)-based detector can achieve more
homogeneous background regions [25]. In addition, many
low-rank and sparse-based hyperspectral anomaly detec-
tion methods have been proposed and show their excellent
performance [26]–[29]. In fact, whether the image is processed
using segmentation or locally selecting a neighborhood set,
highly discriminative features of different objects are required.
However, these methods ignore the fact that the spectral sig-
natures are often mixed due to the complex image acquisition
conditions and the geometrical structure of natural scenes,
leading to inaccurate segmentation results or unsatisfactory
neighborhood sets.

In order to address the aforementioned issues, in this article
we introduce (for the first time in the literature) the intrinsic
image decomposition (IID) into HSI anomaly detection. IID
is a well-known problem in computer vision [30]–[34]. Its
purpose is to extract the reflectance and shading components
from a single image. Recently, an optimization-based IID
method [35] has been employed for feature extraction-based
HSI classification, obtaining good results [36]. This indicates
that HSIs comprise two main components: 1) the spectral
reflectance component, which is determined by the material
and 2) the shading component, which is not only caused by
the illumination conditions and the scene geometry, but also by
the reflected solar radiation and thermal radiation of ground
objects. More recently, a low-rank IID (LRIID) model [37]
has been proposed, which extends the Retinex theory [38]
to the multispectral IID domain. Inspired by this approach,
and assuming that the Retinex theory also holds on the HSI
domain, in this article we adapt the LRIID model to be suitable

for recovering the reflectance and shading components from
HSIs. In our context, the reflectance component is used for HSI
anomaly detection and the shading component is removed.

In order to exploit the reflectance component, we propose a
new dual window density (DWD)-based anomaly detector that
is based on the density peak clustering (DPC) algorithm [39].
Recently, many DPC (density measurement)-based hyperspec-
tral processing algorithms have been proposed [40]–[44].
In [44], the DPC algorithm is applied to detect noisy labels
for hyperspectral classification. The density measurement-
based hyperspectral anomaly detection methods have also been
developed. Tu et al. [45] provided a DPC-based detector
using single window and [46] detects anomalies by the spatial
density background purification. In this article, the use of the
reflectance component (with pure and highly discriminative
spectral features) brings significant benefits to HSI anomaly
detection (in general) and to our newly developed DWD (in
particular). Specifically, our DWD performs adaptive density
integration by using inner and outer windows to detect anom-
alies. Besides that, the advantages of the DWD are mainly
reflected in the following aspects.

1) Since anomalous objects are rarely present and, con-
sequently, can be assumed to exhibit low densities,
detecting anomalies using the concept of pixel density
is feasible. This concept does not require the calculation
of the mean and covariance matrices of the background
statistics, avoiding the potential contamination caused by
anomalies and allowing for real-time implementations.

2) As opposed to many detection methods (that assume that
the background follows a Gaussian distribution), density
analysis does not require data distribution assumptions
but only analyze the density attribute of the data itself.
That is, density analysis can extract the data’s structure
with non-Gaussian distribution [47], which may be more
suitable for HSIs.

3) By adaptively integrating the density in the inner and
outer windows, the dual window operation of our newly
developed DWD is capable of recognizing the size of
anomalies, and detecting anomalies with different sizes.

The remainder of this article is organized as follows.
Section II describes some related works. Section III describes
the proposed HSI anomaly detection method in detail.
Section IV provides the experimental setup and presents our
extensive experimental results. Section V concludes this article
with some remarks and hints at plausible future research lines.

II. RELATED WORK

In this section, we briefly revisit some related works,
including the RX anomaly detector, the LRIID model, and
the DPC algorithm.

A. RX Detector

The RX is one of the most typical hyperspectral anomaly
detection methods which is defined as

RX(x) = (x − μ)T �−1(x − μ) (1)
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where x is a test pixel, μ and � are the mean and covariance
matrix of the global image, respectively. RX(x) is the output
of RX, which is the Mahalanobis distance, equivalent to the
standard deviation away from the mean.

B. LRIID

Let a HSI be denoted as X = [x1, . . . , xi , . . . , xI ] ∈ R
I×D ,

where I and D are, respectively, the number of pixels and the
number of spectral bands. In the IID problem, each pixel xi

can be modeled as the product of a reflectance component ri

and a shading component si as follows:
xi = ri . ∗ si . (2)

The LRIID extends the Retinex theory to the multispectral
IID domain as follows.

1) When the reflectance difference between two pixels
is significant, the Retinex assumes that the difference
between such pixels is mainly caused by the reflectance
component (the shading tends to be consistent). This
leads to si = s j , which can also be written as xi . ∗ r j =
x j .∗ri . We can define an energy function Esc as follows:

Esc =
�
i, j∈N

||wi, j(xi . ∗ r j − x j . ∗ ri )||2 (3)

where N is a neighborhood set (in which only hor-
izontally adjacent and vertically adjacent pixels are
considered) and wi, j contains the weights that reflect
the similarity between the two pixels.

2) When the reflectance difference between two pixels is
small, the Retinex assumes that the difference between
the two pixels is mainly caused by the shading compo-
nent (the reflectance tends to be consistent). This leads
to ri = r j and the energy function Erc can be defined
as follows:

Erc =
�
i, j∈N

||vi, j (ri − r j )||2 (4)

where vi, j contains the weights that reflect the similarity
between the two pixels. The LRIID introduces a low-rank basis
for the reflectance, denoted as matrix Br , and the reflectance
vectors can be linearly represented as ri = Br r̃i . The energy
functions in (3) and (4) can be now separately written as

Esc =
�
i, j∈N

||wi, j(Li Br r̃ j − L j Br r̃i)||2

Erc =
�
i, j∈N

||vi, j (Br r̃i − Br r̃ j )||2 (5)

where Li is a diagonal matrix composed of spectral elements
of xi . In order to avoid the ambiguity of the IID problem,
LRIID also provides another solution with a generic constraint
on the coefficient sum as MR̃ = C, where R̃ consists of r̃
for all pixels. The energy functions can now be combined (in
matrix form) as follows:

Er = ||WL,Br R̃||2 + λ1||VBr R̃||2 + λ2||Mr R̃ − C||2 (6)

where WL,Br are jointly determined by the neighborhood set
N, the weight wi, j , the reflectance basis Br , and the spectral

Fig. 1. Graphical illustration of the RIID model.

vector xi . Likewise, VBr , λ1 and λ2 are the weights that allow
combining the three functions. When the shading base matrix
Bs is known, the energy function can be formulated as follows
(for a more detailed description of the LRIID model, we refer
readers to the work [37]):

Es = ||WBs S̃||2 + λ1||VL,Bs S̃||2 + λ2||Ms S̃ − C||2. (7)

C. DPC

In this section, we briefly describe the DPC algorithm
(a detailed description is available in [39]). It relies on the
Euclidean distance between two pixels xi and x j , computed
as follows:

di j = ||xi − x j ||. (8)

The local density, ρi , of pixel xi can then be defined [48]
as

ρi =
�

j

exp

��
−di j

dc

�2
�

(9)

where dc is the specified cutoff distance that indicates the
radius of the search region, and is specified to control the
weight degradation rate.

III. PROPOSED APPROACH

In this section, we introduce a new HSI anomaly detection
method which is based on two main ideas. First, a Retinex-
based IID (RIID) model is used to extract the reflectance
component and remove the shading component, in order to
obtain pure and discriminative features. Fig. 1 graphically
illustrates the IID operation. Second, in order to avoid the
Gaussian distribution assumption (and the contamination of the
background statistics), and further detect anomalies with dif-
ferent sizes, a new DWD anomaly detector is designed. Fig. 2
provides a schematic of our DWD. Hereinafter, the newly
developed HSI anomaly detection method is referred to as
R-DWD.

A. RIID

We apply the RIID (an IID model inspired by the LRIID) to
obtain the pure reflectance component in HSIs, with the aim
of capturing material reflectance properties. Our assumption
is that Retinex theory still plays a role in HSI data. Given
the amount of evidence already available about the low-
rank nature of the reflectance space [37], a low-dimensional
subspace of X ∈ R

I×D (designated by X� ∈ R
I×D�

) is first
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extracted for subsequent processing. In order to keep the low-
rank nature, we use isometric sampling for band selection.
Next, we introduce the assumptions of Retinex theory in HSI
data. For two neighboring pixels xi and x j in the scene, we can
obtain the same relations given in Section II-B. By adopting
the weights wi j and vi j , we combine these two relations as
follows:

wi j xi . ∗ r j + vi j ri = wi j x j . ∗ ri + vi j r j (10)

where wi j and vi j are determined by a normalized cosine
distance formulated as

dxi ,x j = 1 − xi · x j

|xi ||x j | . (11)

As introduced in [37]

wi j = 1

1 + eα(dxi ,x j −β)
, vi j = 1 − wi j (12)

where α and β are the parameters of the sigmoid function.
In our implementation, we assume that x j denotes the pixels
in the local window Wi of WI ×WI , centered on pixel xi . The
relation in (10) can now be written as follows:

ri =
�
j∈Wi

vi j r j − wi j xi . ∗ r j

vi j − wi j x j
. (13)

Based on (13) and the inherent data constraint of (2),
the resulting shading and reflectance components can be
obtained by optimizing the following energy function:

E(ri , si ) =
�
i∈X�

⎛
⎝ri −

�
j∈Wi

vi j r j − wi j xi . ∗ r j

vi j − wi j x j

⎞
⎠

2

+
�
i∈X�

(xi ./si −ri)
2. (14)

Let R and S be the matrices of the reflectance component
ri and the shading component si , respectively. The shading
component is not taken into account in this article, since it
does not directly reflect the material features.

B. DWD Anomaly Detector

Considering that the distribution of the reflectance compo-
nent (decomposed from HSI data with high dimensionality)
is still complex and non-Gaussian, and assuming that density
analysis can extract the non-Gaussian structure of the data
[47], we developed a DPC-based algorithm to obtain the
densities of all pixels. Because of the low probability of
existence of anomalies in the image, objects in low-density
areas are considered to be anomalies. Taking advantage of this
fact, we can detect anomalies by directly using the concept of
pixel density (without the need to compute the mean and the
covariance matrix of the background).

Specifically, we use the DPC to compute the density in local
windows. The resulting IID reflectance feature matrix R =
[r1, . . . , ri , . . . , rI ] ∈ R

I×D�
is divided into N local windows,

with T pixels represented as Yn = [rn
1, . . . , rn

t , . . . , rn
T ]. For

two pixels under test, that is, rn
i and rn

j , belonging to the nth
window, the Euclidean distance can be calculated as follows:

dn
i j = ||rn

i − rn
j ||. (15)

Fig. 2. Schematic of the proposed DWD detector.

In this way, we can obtain a distance matrix
Dn = [dn

1, . . . , dn
t , . . . dn

T ], where the column dn
t =

{dn
t1, . . . , dn

tt , . . . , dn
tT } denotes the distance between the tth

pixel, rn
t , and all pixels under test within the nth window.

Then, the upper triangular elements in matrix Dn are extracted
and sorted as vector d in an ascending order. The cutoff
distance dc can be estimated as follows:

dc = d([T (T − 1) · P%]) (16)

where [·] represents the integer operation, P is a free-control
parameter, and P% is the percentage which determines the
position of dc in d. Consequently, the local density of the
pixels under test in the nth window can be computed with (9).
For convenience of the subsequent analysis, (9) is rewritten
into an average form as follows:

�Pn = 1

T

T�
t=1

exp

��
−Dn

dc

�2
�

(17)

where �P is the capital form of ρ and �Pn is the density
matrix of the nth window.

Anomalies in the image usually have varying sizes. If we
only use the density obtained in a single window for detection
purposes, this may lead to false-positive detections. In order
to illustrate this fact, we provide a simple graphical example
in Fig. 3. In the figure, we place a target with size of 3 × 3
pixels in a background window with size of 12×12 pixels (in
this case, the target is supposed to have a relatively low density
and can be identified as an anomaly). However, if we place the
same target in a background window with size of 4×4 pixels,
the target will have a higher density, since it contains more
pixels than the background, leading to a wrong identification.
To address this issue, a dual window operation is used for
the density computation, which can effectively identify the
relative size of the target with respect to the background and
better characterize the density of the pixel under test.

Specifically, the dual window refers to an inner window
with a size of Win × Win and an outer window with size
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Fig. 3. Density of the same target in different windows. (a) 3 × 3 target in
a 12 × 12 window. (b) 3 × 3 target in a 4 × 4 window.

of Wout × Wout , in which the outer window is centered on
the inner window. The densities obtained in the nth inner
and outer windows are denoted as the matrices �Pn

in and
�Pn

out, respectively. We note that �Pn
out only consists of the

densities of the center Win × Win pixels, which are extracted
from the entire outer window. Since we focus on the pixels
under test within the inner windows, the outer windows are
viewed as the background and need to be pure. That is,
we assumed that anomaly pixels appear only in the inner
window. However, this is hardly the case in practice, when the
dual windows move across the whole image, there are many
instances that the anomalies are outside the inner window
or across the boundaries of the inner window. As a result,
we provided a strategy to address this issue by eliminating
the interference of the anomalies that are outside the inner
window or across the boundaries of the inner window, which is
as follows.

With (15), we can compute the distance matrix D of the
pixels within an outer window. D is a symmetric matrix in
which each row or column represents the distance between a
pixel and all other pixels. By summing D by row or column,
we obtain the vector d, which contains the sum-distance
between each pixel and all other pixels within the outer
window. Generally, the larger the sum-distance, the higher
the degree to which a pixel is out of the whole background.
According to the value in d, we rank the pixels in the outer
window in the ascending order, and think that the first 10%
of the pixels are out of the background and the last 90% of
the pixels belong to the background. The last 90% of the
pixels are then used to compute the average pixel vector u
for the replacement of the first 10% of the pixels. Therefore,
a new and purer pixel set is obtained, which will be used to
calculate the density in the following. This operation can be
considered as a coarse prerecognition of anomalies with the
purpose of eliminating the interference of the anomalies that
are outside the inner window or across the boundaries of the
inner window.

Then for a certain pixel under test rn
t , ρn

in,t and ρn
out,t

are (separately) its density in the inner window and its density
in the outer window, so that one of the following scenarios may
appear.

1) If ρn
in,t and ρn

out,t are both relatively low, there should be
an anomalous target with small size in the inner window,

Fig. 4. Illustration of four possible scenarios in anomaly detection.

and rn
t is supposed to be an anomalous pixel (e.g., pixel

1 in Fig. 4). Here, ρn
in,t and ρn

out,t will be combined for
detection.

2) If ρn
in,t and ρn

out,t are both relatively high, there should
be an anomalous target with small size or no anomalies
in the inner window, and rn

t is supposed to be a normal
background pixel (e.g., pixel 2 in Fig. 4). Here, ρn

in,t and
ρn

out,t will be combined for detection.
3) If ρn

in,t is relatively high and ρn
out,t is relatively low, there

should be an anomalous target with large size in the
inner window and rn

t is supposed to be an anomalous
pixel (e.g., pixel 3 in Fig. 4). Here, ρn

out,t will be used
for detection.

4) If ρn
in,t is relatively low and ρn

out,t is relatively high,
there should be an anomalous target with large size in
the inner window and rn

t is supposed to be a normal
background pixel (e.g., pixel 4 in Fig. 4). Here, ρn

out,t
will be used for detection.

Let us define �Pn
diff = �Pn

out −�Pn
in as the difference density

matrix between �Pn
in and �Pn

out, and ρn
diff,t is the element of

�Pn
diff, namely the difference value between the density of rn

t
in the outer window and in the inner window. When ρn

in,t and
ρn

out,t are both relatively low or high, the absolute value of
ρn

diff,t tends to be small. When one is relatively high and the
other is relatively low, the absolute value of ρn

diff,t tends to be
large. As a result, we can decide which density to be used for
each pixel under test in the inner window as follows:

ρn
t =

⎧⎨
⎩

1

2

�
ρn

in,t + ρn
out,t

�
,

��ρn
diff,t

�� ≤ ρcut

ρn
out,t ,

��ρn
diff,t

�� > ρcut

(18)

where ρcut is the cutoff density, set as 3 × 10−3 in this article.
Then, in order to obtain a separable density distribution,
we propose the following method:

ρn
t = ρn

t · exp

�
dn

c

dn
tk

− 1

�
(19)

where dn
c is the cut-off distance of the nth inner window, dn

tk is
the distance between pixel rn

t and rn
k , and rn

k is the pixel with
the highest density in the nth inner window. Finally, the density
is normalized by the tanh function as follows:

ρn
t = exp(ρn

t ) − exp(ρn
t )

exp(ρn
t ) + exp(ρn

t )
. (20)
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�Pn is the final density of the nth inner window. A density
map can be constructed for the whole image by combining
the local densities of all of the N windows. Anomalies can
be determined using the final density map. Due to the fact
that anomalies are usually rare and exhibit low density in the
image, if the density of a pixel under test is smaller than a
given threshold, the pixel under test will be determined as an
anomaly.

IV. EXPERIMENTAL RESULTS

A. Data Sets

In our experiments, the Airport-Beach-Urban (ABU) data
set is used to evaluate the proposed method, which includes
an Airport scene, a Beach scene, and an Urban scene.
This data set is available online from1 The color composite
images and reference maps are separately shown in the first
and second rows of Figs. 14–16. The images are portions
with the size of 100 × 100 pixels extracted from larger
images available on the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) web site2 The ground truth of anom-
alies is manually labeled with the help of the Environment
for Visualizing Images (ENVI) software. The Airport-(1)–(3)
images were captured in Los Angeles area, with 7.1-m per
pixel spatial resolution, and the Airport-(4) image was cap-
tured in Gulfport, with 3.4-m per-pixel spatial resolution. The
Beach-(1)–(4) images were captured in Cat Island, San Diego,
Bay Champagne, and Pavia, and their spatial resolution is 17.2,
7.5, 4.4, and 1.3 m per pixel, respectively. The Urban-(1) and
(2) images were captured in Texas Coast and have 17.2-m per
pixel spatial resolution. Urban-(3) was captured in Gainesville,
with 3.5-m per pixel spatial resolution. Urban-(4) and (5) were
captured in Los Angeles, with a spatial resolution of 7.1 m per
pixel. All images were obtained by the AVIRIS sensor except
the Beach-(4) image, which was captured by the Reflective
Optics System Imaging Spectrometer (ROSIS-03) sensor.

B. Verification of Hypothesis

We first focus on verifying the hypothesis about the per-
formance of the DWD discussed in Section III-B. Fig. 5
shows a small portion extracted from the Urban-(4) image
(namely block 1 shown in Fig. 16 [Urban-(4)]), in which the
white pixels represent anomalies and the black pixels represent
the background. The anomalies are located in a large (outer)
window, with a size of 16 × 16 pixels in Fig. 5(a) and in a
small (inner) window in Fig. 5(b), with a size of 8 × 8 pixels.
Fig. 6(a) and (b) shows the densities computed for each pixel
with the outer window and the inner window, respectively.
As can be seen, the densities of anomalies are low in the outer
window whereas the densities are relatively high in the inner
window, which is consistent with our previous statements in
Section III-B.

As shown in Fig. 7, two portions of the Urban-(4) image
(namely, blocks 1 and 2, shown in Fig. 16 [Urban-(4)]) are
extracted to simulate four scenarios. In Fig. 7(a) and (b), there

1http://jiong.tea.ac.cn/people/xudongkang/Codes.html
2http://aviris.jpl.nasa.gov/

Fig. 5. Portion of the Urban-(4) image. (a) Outer window. (b) Inner window.
White pixels: anomalies. Black pixels: background.

Fig. 6. Densities of pixels. (a) Densities calculated by the outer window.
(b) Densities calculated by the inner window.

is a small anomaly and large target, respectively. Twelve pixels
are selected as test samples, including six anomalous pixels
and six background pixels, numbered from 1 to 12.

Fig. 8 presents the densities of each test pixel in both the
inner window (ρin) and the outer window (ρout). As shown
in Fig. 8(a), which corresponds to Fig. 7(a), pixels 1–3 (which
are anomalous pixels) have low densities, and pixels 4–6
(which are background pixels) have high densities in both the
inner and outer windows, which confirms assumptions 1 and
2 in Section III-B. In Fig. 8(b), we can observe that pixels
7–9 (which are anomalous pixels) exhibit high ρin but low
ρout, while pixels 10–12 (which are background pixels) exhibit
lower ρin but higher ρout, which confirms assumptions 3 and
4 in Section III-B.

Moreover, Fig. 9 shows the density after the process indi-
cated in (19) and (20). As can be intuitively seen in the figure,
the densities of anomalous pixels 1–3 and 7–9 (which are
expected to be low) become smaller, whereas the densities of
background pixels 4–6 and 10–12 (which are expected to high)
become higher, resulting in a more separable density distrib-
ution. This means that we can achieve more discriminative
identification results for anomaly detection after applying the
proposed DWD method.

C. Discussion on Segmented Adaptive Local Regions

In this section, we discuss why fixed windows are used in
this article instead of adaptive local regions based on image
segmentation. Fig. 10 shows different superpixel segmenta-
tion results for the Airport-(2) image obtained by the SLIC
superpixel algorithm [49]. Superpixel segmentation groups
neighboring pixels with similar spectral features into the same
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Fig. 7. Four scenarios of anomalous targets in a real image. (a) Small
anomalous target in the inner and outer windows. (b) Large anomalous
target in the inner and outer windows. White pixels: anomalies. Black pixels:
background.

Fig. 8. Density of some selected test pixels in both the inner and outer
windows. Test pixels (a) 1 to 6 and (b) 7 to 12.

Fig. 9. Density of some selected test pixels after applying the DWD
operation. Test pixels (a) 1 to 6 and (b) 7 to 12.

local region (superpixel). As can be seen from Fig. 10, with
the decrease in the number of superpixels (that is, the increase
in the size of superpixels), the anomalous objects (i.e., the air-
planes) are always grouped into independent small regions
which contain a very small amount of background pixels.
According to Section IV-B, in such a superpixel regions the
anomalies tend to exhibit high density, whereas background
pixels tends to exhibit low densities. Consequently, if we detect
anomalies in these superpixel regions, there is a risk that
we do not identify targets of interest but normal background
pixels.

D. Experimental Setup

1) Evaluation Metrics: In order to conduct an exhaustive
quantitative evaluation, we use receiver operating characteris-
tic (ROC) curves [50] and the area under the curve (AUC)

Fig. 10. Different superpixel segmentation results for the Airport-(2) image
obtained by the SLIC superpixel algorithm. (a) Reference map with the
targets of interest. (b) SLIC segmentation with 125 superpixels. (c) SLIC
segmentation with 95 superpixels. (d) SLIC segmentation with 45 superpixels.

TABLE I

PARAMETER SETTINGS FOR THE PROPOSED R-DWD METHOD IN
EACH ANALYZED IMAGE

as our metrics for evaluating the detection performance of
different methods.

2) Parameter Settings: This section analyzes the influence
of different parameters on the detection performance of the
proposed method in terms of AUC. The considered parameters
are: the window sizes: Win and Wout, the parameters of the
weight function: α and β, and the parameter controlling the
cut-off distance: P . Figs. 11 and 12 show the impact of
parameters, Win, Wout, α and β on the obtained AUCs. When
analyzing one of the parameters, the other parameters remain
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Fig. 11. Influence of parameters Win and Wout in different analysis scenarios.

fixed. As shown in Fig. 11, when Win is fixed the AUC
increases with the change of Wout in most cases. Although
the AUC may still improve when Wout is larger than 35,
considering the computational complexity, we analyze values
of Wout within the range [7]–[35]. We can also see that the
detection performance is more sensitive to Wout than to Win.
As shown in Fig. 12, When the value of α is small and
the value of β is large, the proposed method can achieve
better detection performance. Regarding parameter P , Fig. 13
illustrates the influence of this parameter on the AUCs
obtained for different images. Due to the different spatial and
spectral characteristics of the considered images, we report
different parameter settings for the proposed R-DWD method
when applied to the different images considered in our
experiment (see Table I). In addition, the local window size
WI described in Section III-A is set to 3 pixels for most

images, except Airport-(2) and Urban-(3), in which this
parameter is respectively set to 7 and 11 pixels.

E. Detection Performance

In this section, the proposed R-DWD method is compared to
five widely used anomaly detection methods: the RX detector
[7], the LRX detector [7], the CRD detector [21], the local
kernel RX (L-KRX) detector [10], the low-rank and sparse
matrix decomposition (LRaSMD)-based Mahalanobis distance
detector (LSMAD) [51], and the density measurement-based
SDBP detector [46]. Considering that another IID approach
called optimization-based IID has been successfully applied
to HSI classification [36], the O-DWD (DWD combined with
the optimization-based IID) is also included in our comparison.
In order to illustrate the benefits of using the RIID, the results
obtained by the DWD without the RIID operation are also

Authorized licensed use limited to: Antonio Plaza. Downloaded on November 27,2020 at 20:33:01 UTC from IEEE Xplore.  Restrictions apply. 



TU et al.: HYPERSPECTRAL ANOMALY DETECTION USING DWD 8511

Fig. 12. Influence of parameters α and β in different analysis scenarios.

Fig. 13. Influence of parameter P in different analysis scenarios. (a) Airport scene. (b) Beach scene. (c) Urban scene.

reported. To optimally select the relevant parameters (window
size Win and Wout) of the LRX, CRD and the L-KRX, we
sample values of Win in the range [3]–[21] and Wout in the

range [5]–[25], and select those values that perform best
in terms of the AUC metric. For the proposed R-DWD,
the default parameter settings for each image are shown
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TABLE II

AUC SCORES OBTAINED ON THE ABU DATA SET BY THE R-DWD, O-DWD, DWD, RX, LRX, CRD, L-KRX, LSMAD AND SDBP ANOMALY
DETECTION METHODS

in Table I. The O-DWD and DWD also use the optimal
parameters for experiments.

Table II shows the detection performance in terms of the
AUC score for each compared method. The best score for
each row is highlighted in bold. As can be seen from Table II,
the proposed R-DWD method obtains the highest AUCs com-
pared to other methods in most of the considered images. The
average AUCs obtained by our R-DWD method are 0.9844,
0.9926, and 0.9880 for the Airport, Beach, and Urban scenes,
respectively. Compared to the RX, LRX, CRD, L-KRX, and
LSMAD, our R-DWD increases the average AUC of these
methods by 0.0621, 0.0257, and 0.0137 for the Airport, Beach,
and Urban scenes, respectively. When comparing to the SDBP
(also a density measurement-based method), the R-DWD per-
forms much better for the Airport and Beach scenes, whereas
the average AUC of the SDBP is higher for the Urban scene.
Compared to the DWD, we can observe detection performance
improvements that come with the RIID operation in some
images. However, in some images, the DWD performs better

than the R-DWD. This shows that reflectance component can
effectively enhance spectral features of images, but not a few
images. The reason may be that some useful information is
removed with the removal of shading component. Therefore,
at present, we can directly use the DWD for hyperspectral
anomaly detection in some cases. Our future works will study
how to combine reflection component and shading component
to improve the generalization performance of our method.
Compared to the O-DWD, the AUCs obtained by our R-DWD
are significantly higher. If we take the Urban scene as an
example, the average AUC for the O-DWD is 0.9667, whereas
the average AUC for our R-DWD is 0.9880. This indicates
that the RIID is more suitable for HSI anomaly detection than
the optimization-based IID. In addition, the volatility of the
AUC for the R-DWD method is also smaller than for the other
tested methods, which reveals a better stability of our newly
developed R-DWD.

Figs. 14–16 show the detection maps obtained by the
different tested methods on the Airport, Beach, and Urban
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Fig. 14. Detection maps obtained by the different tested methods on the Airport scene. (a) Color composite of the HSI. (b) Reference map showing the
targets to be detected. (c) Result of the R-DWD method. (d) Result of the O-DWD method. (e) Result of the DWD method. (f) Result of the RX method.
(g) Result of the LRX method. (h) Result of the CRD method. (i) Result of the L-KRX method. (j) Result of the LSMAD method. (k) Result of the SDBP
method.

Fig. 15. Detection maps obtained by the different tested methods on the Beach scene. (a) Color composite of the HSI. (b) Reference map showing the targets
to be detected. (c) Result of the R-DWD method. (d) Result of the O-DWD method. (e) Result of the DWD method. (f) Result of the RX method. (g) Result
of the LRX method. (h) Result of the CRD method. (i) Result of the L-KRX method. (j) Result of the LSMAD method. (k) Result of the SDBP method.

scenes. As can be intuitively seen, the R-DWD provides the
best detection maps. Actually, the R-DWD, O-DWD and DWD
can effectively detect most of the anomalies and preserve the
shapes of such anomalies. In the detection maps obtained
by the RX, LRX, CRD, L-KRX, LSMAD, and SDBP, it is
difficult to visually identify anomalies or the shapes of the
anomalous objects. Both LRaSMD and RIID can be regarded
as matrix decomposition-based methods that can effectively
extract the useful component for anomaly detection, but our
RIID performs much better than the LSMAD. Compared to

the O-DWD, the RDWD generates fewer false alarms. This
reveals the advantages of detecting anomalies in the reflectance
component obtained by RIID, which extracts the material
spectral information and enhances spectral discrimination, thus
leading to the detection of anomalies with different sizes
by means of the DWD. If we take the Urban scene as an
example, the resulting map obtained by the R-DWD appears
much cleaner than those obtained by the O-DWD. For the
comparison of R-DWD and DWD, the results are similar in
vision. However, if we take Figs. 14 and 15 as an example,
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Fig. 16. Detection maps obtained by the different tested methods on the Urban scene. (a) Color composite of the HSI. (b) Reference map showing the targets
to be detected. (c) Result of the R-DWD method. (d) Result of the O-DWD method. (e) Result of the DWD method. (f) Result of the RX method. (g) Result
of the LRX method. (h) Result of the CRD method. (i) Result of the L-KRX method. (j) Result of the LSMAD method. (k) Result of the SDBP method.

Fig. 17. ROC curves obtained for the different tested methods on (a) Airport-(4) image, (b) Beach-(2) image, and (c) Urban-(3) image.

the R-DWD and DWD still produces a certain amount of false
alarms in the overall detection result.

For further evaluation, Airport-(4), Beach-(2), and Urban-
(3) have been selected for comparing the ROC curves obtained
by the different tested methods. As shown in Fig. 17, the pro-
posed R-DWD, O-DWD and DWD outperform other detection
methods in most cases. In other words, the true-positive rates
obtained by the proposed methods are always higher than those
obtained by the other methods when the false alarm rate varies
from 10−4 to 1. As can be seen in Fig. 17(a), the ROC curve
of the R-DWD rise relatively sharply. When the false alarm
rate is very small, the true-positive rate for the R-DWD is
superior.

In addition, Fig. 18 shows the final binary detection
results obtained by the proposed method through threshold

segmentation. As shown in Fig. 18, the detection results are
much more clean than the detection maps in Figs. 14–16 and
most of the anomalies are detected.

F. Comparison of Computational Time

In this section, we compare the computational time of some
comparison detectors: R-DWD, O-DWD, DWD, RX, LRX,
and CRD, which is summarized in Table III. The experiment is
conducted on the Airport-(4), Beach-(4), and Urban-(5) images
on a computer with a 2.7-GHz CPU and 8-GB memory and
implemented in MATLAB. As can be seen from Table III, the
RX consumes the least time compared with other algorithms.
Also as a sliding window-based algorithm, the R-DWD is
much faster than LRX and CRD. The speed of the R-DWD is
also faster than that of the O-DWD since the RIID takes less
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Fig. 18. Binary detection results obtained by the proposed method through threshold segmentation.

TABLE III

COMPUTATION TIME (IN SECONDS) OF DIFFERENT

COMPARISON DETECTORS

time than the optimized-based IID. For the speed comparison
between the R-DWD and DWD, it depends on the determined
window size. When the selected window size is the same,
the R-DWD is faster than DWD since that the spectral bands
have been reduced after the RIID operation.

V. CONCLUSION

This article introduces a new HSI anomaly detection method
called R-DWD. Our method is composed of main ingredi-
ents: the RIID and the DWD-based anomaly detector. The
RIID is adapted from the low rank multispectral IID model,
called LRIID, which can effectively extract the reflectance
component of HSIs for anomaly detection purposes. In order
to exploit this reflectance component for anomaly detection
purposes, a DWD is proposed that circumvents the Gaussian
assumption of the distribution of the background in HSIs,
improving the calculation of background statistics. The dual
window operation of DWD exhibits the ability to detect anom-
alies with varying sizes and accurately recognize their shape.

Our experimental results, conducted on a large database of
HSIs including airport, beach, and urban scenes, demonstrate
the superiority of the proposed method with regards to state-of-
the-art competitors. As with any new approach, there are still
some unresolved issues that may present challenges over time.
Specifically, the proposed method still produces a certain num-
ber of false alarms in the detection result, and the parameter-
setting of our algorithm is laborious. These aspects deserve
further research and improvements in future work. We are also
planning on developing an efficient implementation of the pro-
posed approach by resorting to high performance computing
architectures such as graphics processing units (GPUs).
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