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Abstract— Hyperspectral unmixing (HU) is an active research
topic in the remote-sensing community. It aims at modeling
mixed pixels using a collection of pure constituent materi-
als (endmembers) weighted by their corresponding fractional
abundances. Among existing unmixing schemes, nonnegative
matrix factorization (NMF) has drawn significant attention due
to its unsupervised nature, as well as its capacity to obtain
both endmembers and fractional abundances simultaneously.
In this article, we present a new blind unmixing method based
on the generalized morphological component analysis (GMCA)
framework, in which an additional constraint is introduced
into the standard NMF model to represent the sparsity and
morphological diversity of the abundance maps associated with
each endmember. More specifically, we take into account the
fact that different ground categories in a hyperspectral scene
generally exhibit various spatial distributions and morphological
characteristics. As a result, when providing a specific dictionary
basis for these categories, their corresponding abundance maps
(referred to as sources) can be sparsely represented. In addition,
due to the low correlation between different sources, their
sparse representations will not share the same most significant
coefficients. With this observation in mind, we can further
promote source discrimination and separation in the unmixing
process. Moreover, in order to obtain a stable solution of the
involved optimization problem, we adopt an alternate iterative
constrained algorithm with a threshold descent strategy. Our
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experiments, carried out on both synthetic and real hyperspectral
scenes, reveal that our newly developed GMCA-based unmixing
method obtains very promising results with fast convergence
speed and requiring significantly less parameter tuning. This
confirms the advantage of the proposed spatial morphological
component approach for HU purposes.

Index Terms— Blind source separation (BSS), generalized
morphological component analysis (GMCA), hyperspectral
unmixing (HU), nonnegative matrix factorization (NMF).

I. INTRODUCTION

HYPERSPECTRAL sensors are able to capture ground
remote-sensing signals with very fine spectral resolution,

thus promoting the development of quantitative remote sensing
applications [1]–[4]. However, due to their limited spatial
resolution (as well as the complex distribution of ground
categories), the resulting images often contain a large number
of mixed pixels [5], [6]. In order to reveal the intrinsic
material composition of mixed pixels and adequately exploit
hyperspectral imagery (HSI), hyperspectral unmixing (HU)
has been an emerging strategy to characterize this kind of
remotely sensed data.

Over the past decades, plenty of HU methods have been
developed. According to their characteristics, these meth-
ods can be divided into two main groups. One group of
methods usually adopts a successive processing chain with
two separate steps: 1) identify the endmember signatures
and 2) estimate their corresponding fractional abundances
based on the considered mixing model (e.g., linear mixing
model (LMM) or nonlinear mixing model (NLMM) [7], [8]).
A category of methods within this group was developed by
relying on the pure pixel assumption, including endmember
identification methods such as orthogonal subspace projection
(OSP) [9], pixel purity index (PPI) [10], N-FINDR [11],
vertex component analysis (VCA) [12], among many
others [5]. Actually, pure pixels are seldom presented in real
HSI scenes. To address this issue, another category of methods
was developed without the pure pixel assumption, includ-
ing methods able to identify (virtual) endmember signatures
and their corresponding abundances, such as the simplex
identification via split augmented Lagrangian (SISAL) [13],
the minimum volume spectral analysis (MVSA) [14], among
many others [5]. In both cases, it is a challenge to identify
realistic endmember signatures directly from the HSI, without
prior knowledge. As an alternative, several methods tend to
exploit endmember signatures from a previously available
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(and potentially very large) spectral library, such as the pub-
lic United States Geological Survey (USGS) digital spectral
library (available online: http://speclab.cr.usgs.gov/spectral-
lib.html). Then, the unmixing process amounts at choosing
an optimal subset of library endmembers to model each
pixel [15]. Although such library endmembers avoid the direct
extraction of image endmembers from the HSI, it is impor-
tant to note that the library endmember signatures usually
exhibit inconsistent acquisition conditions compared to the
image pixel signatures, and this inconsistency may cause
error propagation to the subsequent abundance estimation step.
In addition, considering that spectral variability usually exists
in real HSI scenes [16], researchers have proposed many new
models to incorporate endmember variability in the unmixing
process, such as normal compositional model (NCM) [17] and
multiple endmember spectral mixture analysis (MESMA) [18].

From the statistical point of view, HU can be treated as a
blind source separation (BSS) problem, and this idea brings
the application of nonnegative matrix factorization (NMF)-
based unmixing [19]. Compared to the aforementioned two-
stage processing chain (and whatever the adopted endmember
identification method), NMF-based unmixing not only pro-
vides a fully unsupervised procedure (without the pure pixel
assumption), but is also able to determine the endmembers
and corresponding fractional abundances simultaneously.
Moreover, NMF naturally introduces nonnegative constraints
into the unmixing model, which makes it particularly suitable
for HSI unmixing purposes. In this article, we also focus on
the HU issues under the NMF framework.

The standard NMF model is nonconvex and exhibits scale
indeterminacy. Therefore, considering only nonnegative con-
straint is not enough to obtain a stable solution. Recently,
researchers have introduced a series of additional constraints
into the standard NMF formula. Among them, one possible
course of action is directed at imposing constraints on the
endmembers themselves, while other strategies prefer to
impose constraints on the abundances. In addition, the com-
bination of the two aforementioned lines of action are also
exploited in some contributions [20].

Concerning the constraints on the endmembers, a common
idea is to explore the intrinsic structure of the whole endmem-
ber set. From a convex geometry point of view, a minimum
simplex volume constraint can be imposed on the endmember
set, leading to a new MVC-NMF [21] unmixing method.
Considering the nonconvexity and computational burden of the
simplex volume, as well as the fact that a minimum volume
simplex is, in essence, equal to a simplex which is as compact
as possible, a MDC-NMF [22] method has been proposed,
in which an endmember distance is designed to measure com-
pactness. Beyond that, and motivated by the smooth changes
in spectral wavelength, a smoothness constraint has also
been imposed on each endmember signature [23]. However,
as the noisy and water-vapor absorption bands are removed,
the uniform smoothness is undermined, while the piecewise
smoothness actually happens in spectral space [24].

Concerning the constraints imposed on the abundances,
since only a few endmembers normally participate in each
mixed pixel, the sparsity is reflected on the abundance

matrix [24]–[29]. Besides, the unmixing can be treated as a
rank reduction procedure, where the high spatial correlation
is translated into the low rank of the involved abundance
matrix, so the low-rank constraint can also be applied for this
purpose [30]–[32]. Last but not least, many kinds of spatial
constraints have been applied in abundance estimation, high-
lighting some spatial and/or structural characteristics such as
local homogeneity, morphological diversity, etc. [33]. Among
them, sparse constraints are the most widely adopted, and
different sparse-inducing representation patterns have been
considered. On the one hand, as the abundance maps of
each endmember show a localized distribution, it is possi-
ble to enhance row sparsity on the abundance matrix. With
this observation, Jia and Qian [24] designed a quantitative
sparse measurement by using a division between the �1 and
�2 norm on each row of the abundance matrix, so as to evaluate
the energy concentration of all components in the vector.
However, this model needs to know the sparseness degree of
the abundances in advance, thus bringing some uncertainty to
the final unmixing results. In [26], a novel sparsity measure
(namely, S-measure) was designed based on the higher order
norms of the abundance vector, which does not need an exact
sparseness degree. On the other hand, due to the fact that
normally only a few endmembers contribute to one single
mixed pixel, the sparse representation can be implemented on
each column of the abundance matrix. Initially, the �0 and
�1 norms are commonly adopted, but �0 norm is NP-Hard,
while �1 norm cannot enforce further sparsity when the full
additivity constraint is imposed on the estimated abundances.
After, an unbiased �1/2 norm constraint is incorporated into
the NMF model [34], which provides sparser and more
accurate unmixing results than those delivered with the �1
norm [25]. Moreover, if an over-complete endmember library
is adopted, a collaborative sparsity constraint can also be
adopted, in which case an �2,1 mixed-norm is imposed to
promote row sparsity on the abundance matrix [27]. It should
be noted that the aforementioned �p (for 0 ≤ p < 1)
norm constraints are non-continuous and non-differentiable,
leading to the numerical instability and noise interference
in the optimization process. To address this issue, in [35],
an arctan function with Lipschitz continuous characteristic
is introduced to exploit sparsity of the abundances, thus
enhancing the numerical stability and the immunity to noise
corruption. Recently, a superpixel-based group-sparsity con-
straint has also been developed [36], in which a modified
mixed-norm was designed to exploit the shared sparsity pattern
of each superpixel. This idea can be seen as an integration
of the spatial structure and the sparsity of the abundances.
As discussed above, the solution of a sparse constrained
NMF model relies heavily on the initial selection and the
regularization parameters, hence in several cases the unmixing
results are undetermined.

Relatively speaking, imposing spatial structural constraints
on the abundance images (e.g., piecewise smoothness and
local manifold) often acts as a supplement for the sparse
constraints. Considering that neighboring pixels are more
likely to have similar fractional abundances for the same
endmember, abundance smoothness constraints have also been
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combined with the NMF model [37]. Based on the fact that
spectral signatures of neighborhood pixels still exhibit certain
differences, a more refined local smoothness constraint was
developed in [38]. In [28], total variation (TV) regularization is
introduced to capture the piecewise smoothness structure of the
abundance matrix. In addition to the aforementioned smooth-
ness constraints, manifold structures have also been incor-
porated into the sparse constrained NMF formula [39]–[44].
In these methods, a graph model (e.g., single graph, multiple
graphs, and hypergraph) is established to enhance the local
affinity structure between neighboring pixels. In order to fully
exploit the structural characteristics of abundance images,
in [45] the HSI was segmented into a series of small homoge-
neous regions by using the graph cut technique, and then the
consistent data distributions within each region are explored
while discriminating different data structures across regions.
In [33], the HSI was segmented into homogeneous regions
and detailed regions. For the homogeneous regions, sparse
constraint was adopted, whereas for the detailed regions,
a graph regularized semi-NMF was performed.

Furthermore, researchers have incorporated the deep learn-
ing into the NMF model and proposed a deep NMF struc-
ture for exploring hierarchical features in the unmixing
process [46], [47]. Generally, in each layer, the abundance
matrix is directly decomposed into the abundance matrix and
endmember matrix of the next layer. Then, the aforemen-
tioned sparse constraints or manifold structural constraints are
imposed on the abundance matrix of each layer.

As a summary, although the sparse and structural con-
straints bring more well-posed NMF models, some important
issues deserve further exploration. First, most spatial struc-
ture constraints are designed based on the spectral similarity
between neighboring pixels, which is insufficient for char-
acterizing some high-level structure attributes, including spa-
tial distribution, morphology, etc. Compared to neighborhood
similarity, these high-level spatial attributes can significantly
enhance source representation and discrimination. Second,
in most existing constrained-NMF models, the complemen-
tarity between the sparse and structure constraints is not
sufficiently explored (specifically, the beneficial effects of
spatial structure information on sparse representation have not
been fully explored). Last but not least, the involved optimiza-
tion problems in most existing constrained-NMF models are
difficult to solve and the corresponding solutions are often
unstable. As a result, it is necessary to provide more efficient
and stable optimization algorithms.

In this article, we present a new unsupervised HU method
based on the generalized morphological component analysis
(GMCA) framework [48], [49]. The core idea of GMCA is to
adopt two kinds of priors: sparsity and morphological diversity.
More specifically, different ground categories in the HSI gen-
erally exhibit various geometrical structures or morphologies,
as well as diverse spatial distributions. When providing a
specific dictionary basis, their corresponding abundance maps
(or sources) can be sparsely represented, and if the correlation
between sources is low, their sparse representations will not
share the same most significant coefficients, thus promot-
ing source discrimination and separation. Compared with

state-of-the-art NMF-based unmixing methods, the main inno-
vative contributions of our work can be summarized as follows.

1) We introduce a new sparse-constrained NMF formula.
Here, the sparsity comes from the sparse representation
of morphological components, which are decomposed
from each source in the image.

2) We exploit the morphological diversity between the
abundance maps of each endmember and their benefits
in terms of sparse representation and source separation,
while most conventional constrained NMF schemes treat
the sparsity and spatial structure constraints in a rela-
tively independent way.

3) We adopt an alternative iteration constrained algorithm
with a threshold descent strategy to solve the involved
optimization problem. Here, the threshold descent strat-
egy can identify the mixing directions by means of
searching the largest coefficients and refining them after-
ward. Thus, a global optimal solution can be obtained.

Our experiments, carried out on both synthetic and real
HSI scenes, reveal that the proposed GMCA-based unmixing
method leads to very promising results, as well as fast con-
vergence speed and significantly less parameter tuning. This
confirms the advantages of spatial morphological component
analysis (MCA) for HU purposes.

The remainder of this article is organized as follows.
Section II details the proposed GMCA-based unmixing
method, as well as the corresponding optimization algorithm.
Sections III and IV discuss our experimental results, obtained
by using both synthetic and real HSI scenes, and provide com-
prehensive performance assessments and comparisons with
some state-of-the-art unmixing methods. Section V concludes
this article with some remarks and hints at plausible future
research lines.

II. GMCA-BASED HU METHOD

In this section, the LMM is first briefly introduced. Then,
the standard NMF model and two main optimization algo-
rithms are discussed. Next, the newly proposed GMCA-based
unmixing model is detailed, and the advantages of GMCA
in terms of source separation are discussed. Finally, the solu-
tion of the involved optimization problem is presented and
discussed.

A. LMM

In our proposed unmixing scheme, the LMM is adopted
due to its simplicity as well as its capacity to provide an
approximate description of light scattering occurring in real
scenes [5]. For a given pixel vector x = [x1, . . . , xb]T , with
b denoting the number of spectral channels, the LMM can be
expressed as

x =Ms + n (1)

where M = [m1, . . . , mp] ∈ R
b×p is the endmember sig-

natures matrix, s = [s1, . . . , sp]T is the abundance vector of
pixel, p is the number of endmembers, and n accounts for the
additive noise and model imperfections. Generally, the abun-
dance vector of a pixel meets two constraints: the abundance
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nonnegativity constraint (ANC) (i.e., si ≥ 0), and the abun-
dance sum-to-one constraint (ASC) (i.e.,

∑p
i=1 si = 1),

respectively [50]. Under the LMM, and given a HSI, the pur-
pose of unsupervised unmixing is to recover the endmember
signatures matrix, along with the corresponding fractional
abundances matrix.

B. Standard NMF Model

As a widely used unsupervised unmixing model, the stan-
dard NMF model adopts a similar formula as the afore-
mentioned LMM. However, from the perspective of BSS,
the NMF assumes that the observed original HSI is a linear
instantaneous mixture of unknown sources (corresponding to
each row vector in the abundance matrix of the LMM) with
an unknown mixing matrix (corresponding to the endmem-
ber matrix in the LMM). Here, we present the standard
NMF model as

Y =MS+ N (2)

where Y = [yT
1 , . . . , yT

b ]T is the b × t matrix, in which each
row stands for a single-channel image yi (i = 1, . . . , b) with
t number of pixels, and S = [sT

1 , . . . , sT
p ]T is the source matrix

whose rows s j ( j = 1, . . . , p) are the sources that denote
the abundance maps of each endmember. Finally, the matrix
N ∈ R

b×t is added to account for noise or model imperfec-
tions. Obviously, (2) can be treated as a matrix form of (1).

In order to solve (2) by using the NMF algorithm,
the noise N is usually assumed to be independent and identi-
cally distributed Gaussian noise. Then, the objective function
based on the maximum-likelihood estimation is presented as
follows:

arg min
M,S

1

2

∥∥Y−MS
∥∥2

F

s.t. M ≥ 0, S ≥ 0, 1T
p S = 1T

t (3)

where the notation ‖·‖F is the Frobenius norm, 1p and
1t are all one column vectors of size p and t . Considering
that the problem (3) is non-convex, while the two subproblems
corresponding to M and S are convex, the former is generally
solved by alternately updating M and S.

A well-known type of optimization algorithm is the fixed-
point algorithm, which adopts a multiplicative update strategy
to minimize problem (3). Among others, Lee and Seung [51]
developed a weighted gradient descent method to alternately
update M and S at each iteration, in which the weights are
designed to keep the cost function monotonically decreasing as
well as maintaining the positivity of M and S for all iterations.
In this case, the update rules of M and S are

M̂ ← M� (YST )� (MSST + ε) (4)

Ŝ ← S� (MT Y)� (MT MS+ ε) (5)

where � and � denote the element-wise matrix multiplication
and division operators, respectively, and ε is a small regular-
ization applied to the denominator in order to avoid dividing
by zero. The multiplicative update algorithm is considered as
a standard NMF optimization algorithm due to the fact that it

does not require parameter tuning. However, it is too slow in
practice, and even hard to converge to a local minimum [52].

Another type of optimization algorithms that can be used
for solving problem (3) is called alternative nonnegative least
squares (ANLS) [53], [54], in which the pseudo-inverse is
calculated in each subproblem, and then the corresponding
results are projected onto the positive quadrant to satisfy the
nonnegative constraint. In this case, the iterative update rules
of M and S are expressed in the following equation:

M̂ ← [YST (SST )−1]+ (6)

Ŝ ← [(MT M)−1MT Y]+ (7)

where the notation [x]+ = max(x, 0) denotes a positive
projection operation. Similar to the multiplicative update algo-
rithm, ANLS also owns a very simple and efficient implemen-
tation process. However, the ANLS only applies to the least
square cost function, and the convergence of the algorithm is
still not guaranteed.

C. GMCA-Based Unmixing

As stated previously, only imposing nonnegative constraints
on the NMF model is generally insufficient. To this end,
we introduce the GMCA in this article for HSI unmixing pur-
poses. The GMCA model is based on the priors of sparsity and
morphological diversity, which offers a generalization of the
MCA [55], [56]. In the MCA framework, the original image
is assumed to be a linear combination of multiple morpho-
logical components (e.g., piecewise smoothness and texture
components), where each morphological component can be
sparsely represented under a specified dictionary basis, and this
dictionary will not provide sparse representation for the other
morphological components. The GMCA framework further
extends MCA framework and applies it to a BSS context.
According to (2), GMCA assumes that the original image Y is
a linear instantaneous mixture of multiple unknown sources S,
along with an unknown mixing matrix M. Moreover, each
source s j ( j = 1, . . . , p) can be modeled as a linear com-
bination of multiple morphological components, in which
each component can be sparsely represented by its associated
dictionary basis as expressed in the following equation:

s j≈
K∑

k=1

s j k =
K∑

k=1

Dkα j k (8)

where K is the number of morphological components con-
tributed to one single source, s j k is the kth morphological com-
ponent corresponding to the source s j , and α j k is the sparse
representation coefficient vector of the morphological compo-
nent s j k under the dictionary Dk . Also D := (D1, . . . , DK ) is
built as a concatenated dictionary, which acts as a discrimi-
nator between different morphological components, selecting
one component over the others. Following the assumptions
of sparsity and morphological diversity, each source can be
represented with only a few most significant representation
coefficients, while other coefficients are small, or close to
zero. Moreover, the most significant coefficients between
different sources will show inconsistence due to their
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Fig. 1. Toy example: GMCA for BSS. The first row shows one channel image of the mixed images, the first and second columns show the real source
images with the corresponding Curvelet transform coefficients (only the coefficients of the fourth scale layer are presented), the third and fourth columns
show the estimated sources with the corresponding Curvelet transform coefficients.

morphological diversity. This is a critical issue for the suc-
cess of source separation process. Finally, GMCA seeks an
unmixing scheme by estimating the mixing matrix M, leading
to the sparsest sources S in the concatenated dictionary D. The
involved constrained optimization problem is given by

arg min
M,α

1

2

∥∥Y−MDα
∥∥2

F + λ

p∑
j=1

K∑
k=1

‖α j k‖1. (9)

Here, in order to support the efficiency of the GMCA-
based unmixing scheme, we provide a toy experiment to
illustrate the way GMCA exploits sparsity and morphological
diversity. First, four remote-sensing images with the same size
of 256× 256, including building, baseball diamond, freeway,
and forest, are chosen and converted into grayscale images.

Then, these grayscale images are mixed to form a composite
image data with 50 channels, where each channel is a linear
random mixture of the above four grayscale images. In order to
better demonstrate the robustness to noise, Gaussian noise with
signal-to-noise ratio (SNR) of 10 dB is added to the composite
image, so as to form the final test image. The first row in Fig. 1
shows one channel image of the mixed images, and the first
column shows four real grayscale source images. It can be
observed that these specially chosen images show different
scene information respectively, thus reflecting distinct mor-
phological characteristics, namely, satisfying morphological
diversity. Moreover, to obtain a sparse representation of these
source images, we adopt the Curvelet transform to construct
dictionary (due to its anisotropy, which is very beneficial to
characterize the image edges). In this case, we used a fast
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discrete Curvelet transform provided from a CurveLab soft-
ware package [57], which is based on the unequally spaced
fast Fourier transform (USFFT), and the number of scales
including the coarsest wavelet level is set to log2(N)−3, where
N is the maximum of width and height of image. As a result,
five number of scales transformed coefficients are obtained.
The second column of Fig. 1 shows the Curvelet coefficients
corresponding to the real source images (here only the coef-
ficients of the fourth scale layer are presented). It can be
observed that, in such well-chosen Curvelet transform domain,
different sources show most significant diverse coefficients
(except for the “forest” image, in which very few significant
coefficients exist), thus satisfying sparsity and morphological
diversity.

After that, the GMCA is performed on the mixed images
for source separation purpose, and the estimated sources as
well as the corresponding Curvelet transform coefficients are
shown in the third and fourth columns of Fig. 1. Obviously, the
GMCA not only keeps the similar sparsity divergence with
respect to the real sources but also enhances and concentrates
the significant sparse coefficients in the estimated sources.
Therefore, if the sources are not too correlated, it can be
attributed to the enhancement of separability by the mor-
phological diversity, which means that these sources (with
different morphological characteristics) are diversely sparse,
and sparser sources lead to more separability. In addition,
as a sparsity-based algorithm, GMCA demonstrates to be very
robust to noise. This is due to the fact that a sparse source
generally has few significant coefficients in the sparse domain,
while the noise is typically not sparse, so it is easier to separate
noise from the sources in such domain.

Equation (9) is the standard GMCA formula, in which
the sparse constraint is imposed on the coefficient vectors of
each source image. In this case, the item of ‖Y −MS‖2F is
represented in the direct domain, while the item of sparse
constraint ‖α‖1 is represented in the transformed domain. Two
kinds of representation domains exist in one objective formula,
leading to a very difficult optimization solution. In order to
simplify the optimization solution, as well as considering the
characteristics of HSI, we transfer the sparse constraint on
the coefficients of the transformed domain into the sparse
constraint on the sources of the direct domain and obtain a
revised formula is given as

arg min
M,S

1

2

∥∥Y−MS
∥∥2

F+λ

p∑
j=1

‖s j‖1+i+(M)+i+(S) (10)

where s j is the j th row of matrix S, which represents the
abundance map of the j th endmember. i+(·) is a characteristic
function to enforce the nonnegative constraint as

i+(x) 
→
{

0, if x ≥ 0

+∞, otherwise.
(11)

Compared to (9), (10) is not only simpler and more efficient
due to the fact that the sparse constraint term and the data
fidelity term are all in the direct domain but also can be
explained in HSI scenes. On the one hand, the source images
obtained by the multiplication of their corresponding sparse

coefficient vectors and the concatenated dictionary, generally
still show certain sparsity and diversity, which means the most
significant entries in each obtained source should be disjoint.
On the other hand, different ground categories in HSI scenes
generally exhibit various and localized spatial distributions,
so the abundance maps corresponding to each endmember
possibly show different geometrical structures or morpholog-
ical characteristics. When imposing sparse constraint on the
abundance maps of each endmember, it means that different
abundance maps will have disjoint the most significant entries,
thus playing an important role for source separation.

To this end, the main innovative contributions of our work
is that we introduce a sparsity constraint on the abundance
maps corresponding to each endmember, and such row sparsity
constraint is derived from the idea of the GMCA framework.
Specifically, the sparse constraint in (10) is characterized by
using the spatial morphological diversity of different sources,
which denote the fact that morphological components in a
source exhibit a sparse representation under the specified dic-
tionary basis. When combining all morphological components,
these sources will also own sparse representations under the
corresponding concatenated dictionary. This idea is crucial for
the HSI unmixing scheme, in which the ground categories
generally do not share the same spectral signatures and spatial
distributions, so their corresponding abundance maps will
present some kinds of diversity.

D. Solution of the Optimization Problem

The optimization problem (10) is not convex because of
the product between M and S, so we split it into two convex
subproblems and adopt an alternative iteration constrained
solution process. Meanwhile, considering that during the opti-
mization process, the cumulative sum of the sparse constraints
on all rows can be simply treated as the sparse constraint on the
whole matrix, so the term of

∑p
j=1 ‖s j‖1 in (10) is converted

into the sparse constraint term of the whole matrix S. Finally,
the two split subproblems are

arg min
S

1

2

∥∥Y−MS
∥∥2

F + λ‖S‖1 + i+(S) (12)

arg min
M

1

2

∥∥Y−MS
∥∥2

F + i+(M). (13)

Now, the above two subproblems are convex, but they are
still hard to solve due to their non-smoothness and the fact
that the regularization terms in these subproblems are non-
differentiable. Here, in order to obtain a stable solution of
the two constrained subproblems, we introduce an exactly
alternative optimal process based on the proximal splitting
techniques. The idea of proximal splitting techniques is to
split a convex (but not differentiable) function into several con-
vex functions, and then perform the alternating optimization.
Focusing on (12), it can be divided into two functions: one
part is a smooth and differentiable data fidelity term, defined
as f (S) = 1

2‖Y −MS‖2F , and the other part comprises two
nonsmooth and nondifferentiable convex regularization terms,
defined as g(S) = λ‖S‖1 + i+(S). The function f (S) is
differentiable, generally the gradient descent algorithm can
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be directly adopted to pursuit a local minimum, in this
case, the gradient of f (S) can be calculated as ∇ f (S) =
MT (MS−Y), which is L-Lipschitz continuous gradient, and
L = ‖MT M‖s is the spectral norm of matrix M. As a
result, we can solve part-problem f (S) by using the following
iterative updating formula:

Ŝ← S− 1

L
∇ f (S). (14)

The function g(S) is not differentiable but convex, which
admits an explicit proximal operator with a closed-form
expression. Concretely, for the �1 norm constraint, the non-
negative soft-thresholding operator is used, as defined in the
following equation:

[STλ(S)]+ 
→ sign(S)[|S| − λ]+. (15)

Here, we introduce a forward-backward splitting (FBS) algo-
rithm [58] to obtain an exactly optimal solution. The iteration
procedure of FBS algorithm consists of a forward (explicit)
gradient step on f (S), followed by a backward (implicit) step
on g(S), this backward step adopts a proximal operator and
can also be regarded as a gradient descent step. However, due
to the fact that it is performed on the estimated final result, not
on the result of the previous iteration, it is called backward
step. In this case, the update rule of S in the subproblem (12)
is expressed as

Ŝ ← [ST λ
L
(S− 1

L
∇ f (S))]+

← [ST λ
L
(S− 1

L
(MT (MS− Y)))]+

← [S− 1

L
(MT (MS− Y))− λ

L
]+

← [S− 1

L
(MT (MS− Y)− λ)]+. (16)

It should be noted that, as opposed to the traditional thresh-
olding strategy, an iterative soft-thresholding is performed on
the gradient (while not directly on the source values).

The solution of subproblem (13) is similar to subprob-
lem (12), which can also be split into two parts: a norm-
constrained term f (M) = 1

2‖Y −MS‖2F , and a nonnegative
orthant term g(M) = i+(M). In this case, the projected
gradient algorithm can be directly used, and the corresponding
iterative updating formula is shown in the following:

M̂ ← [M− 1

Ls
∇ f (M)]+

← [M− 1

Ls
((MS− Y)ST )]+ (17)

where Ls = ‖SST ‖s is the spectral norm of matrix S.
Moreover, the involved iterative optimization process

applies a threshold descent strategy, which has a significant
impact on the performance of source separation process.
In other words, the threshold λ evolves from a large penaliza-
tion value, and then swiftly decreases to smaller values. This
particular decreasing thresholding scheme provides robustness
to the algorithm by working first on the most significant
features extracted from the data, and then progressively incor-
porating smaller details to finely tune the model parameters,

thus leading to faster convergence (especially in the iterations
associated with each subproblem).

To conclude this section, we provide a pseudocode descrip-
tion of the involved optimization process in Algorithm 1. It can
be observed that the whole optimization process includes a
two-layer iterative process, where the outer layer is alterna-
tively split into M and S, as well as the threshold descent step,
while, for each subproblem, an inner iteration is performed by
using the FBS algorithm.

Algorithm 1 Pseudo Code of the Proposed GMCA-Based HSI
Unmixing Method
Input:
1: Original HSI data: Y;
2: Final threshold computation: σ .
3: Maximum number of iterations of outer layer: max_i t ;
4: Maximum number of iterations of FBS algorithm: f bs_i t .

Output:
5: Endmember matrix M and Abundance matrix S.
6:

7: Estimate the number of endmembers p by using
HySime [59].

8: Initialize M with the first p principal components.
9: for k = 1 to 2 do

10: // Alternate between ANLS updates and FBS updates.
11: Ŝ = [(MT M)−1MT Y]+;
12: M̂ = [YST (SST )−1]+;
13: Ŝ = FBS(MT Y, MT M, S, 0, f bs_i t);
14: M̂ = FBS(SYT , SST , MT , 0, f bs_i t);
15: M̂ = M̂T ;
16: end for
17:

18: // Main loop.
19: M = Normali ze_M(M, S).
20: λ0 = ‖MT (MS− Y)‖∞
21:

22: for i = 1 to max_i t do
23: ======Update S when M fixed======
24: Ŝ = FBS(MT Y, MT M, S, λ, f bs_i t);
25: Ŝ = Normali ze_S(M, Ŝ).
26: ======Update M when S fixed======
27: M̂ = FBS(SYT , SST , MT , 0, f bs_i t);
28: M̂ = M̂T ;
29: M̂ = Normali ze_M(M̂, S).
30: ================Update λ=================
31: res_std = est NoiseStd Dev(Y − M̂Ŝ);
32: λnew = σ × res_std;
33: end for

In Algorithm 1, function FBS() is the FBS algorithm
used to solve two subproblems iteratively. Normali ze_M()
and Normali ze_S() are two regularization functions, which
are used to regularize one matrix and then assign the
scales to the other matrix. Function est NoiseStd Dev() is
used to estimate the noise standard deviation of the current
residual.
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III. EXPERIMENTS ON SYNTHETIC DATA

In this section, a comprehensive experimental assessment
based on synthetic HSI data is carried out, as these synthetic
data can be fully controlled for evaluating the performance
of our newly developed method. At the same time, some
state-of-the-art unmixing methods, including VCA + FCLS,
MVC-NMF, and R-CoNMF, are chosen for comparison with
our proposed GMCA-based HSI unmixing method (referred
to hereinafter as GMCA-HU). Among the considered meth-
ods, VCA + FCLS is a classical two-step unmixing strat-
egy, in which the VCA algorithm is used for endmember
identification and then a fully constrained least squares
(FCLS) [50] is used for abundance estimation. MVC-NMF and
R-CoNMF are all NMF-based unmixing methods that provide
both a set of endmembers and their associated abundances,
MVC-NMF imposes minimum volume simplex constraints on
the endmember set, whereas R-CoNMF imposes a collabora-
tive row sparsity on the abundance matrix.

In our experiments, two metrics are introduced for quanti-
tative assessment: the first one is the spectral angle distance
(SAD), which is defined as the spectral angle between the
estimated and ground-truth endmember signatures, as shown
in (18). The more the spectral similarity, the smaller the
values of SAD. The second one is the root mean square
error (RMSE), which is calculated as the difference between
the estimated and ground-truth abundances, as shown in (19),
in which t denotes the length of the source vector ŝ. In this
case, since we generate the data synthetically, we can compare
the extracted endmembers and the derived abundances with the
ground-truth ones used in the simulation of the data

SAD(m̂, m) = cos−1
(

m̂T m
(‖m̂‖)(‖m‖)

)
(18)

RMSE(ŝ, s) = 1√
t
‖ŝ− s‖F . (19)

The rest of this section is organized as follows. First,
the procedure for generating the synthetic HSI data is pre-
sented. Then, the experimental settings are reported. After that,
detailed discussions of the obtained experimental results are
carried out.

A. Generation of the Synthetic HSI Data

Our synthetic HSI data are generated by adopting a similar
procedure with regard to the one adopted in [25]. First, several
endmember signatures are randomly picked out from the
USGS digital spectral library. The spectral curves of some end-
member signatures are shown in Fig. 2. Then, a synthetic HSI
with a size of 256 × 256 pixels and 221 bands is segmented
into 256 nonoverlapped spatial subblocks with the same spatial
size of 16 × 16 pixels. For each subblock, a random
endmember signature is initially assigned to all the associated
pixels. After that, a spatial low-pass filter is performed on
each pixel with a neighborhood window size of 33 × 33,
so as to generate mixed pixels as well as locally smooth
abundance distributions. It should be noted that, the larger
the size of the filter window, the higher the mixture degree of
the simulated pixels. Furthermore, in order to remove the pure
pixels from the image, the abundance fractions of each pixel

Fig. 2. Some randomly chosen endmember signatures from the USGS library
that have been used to generate synthetic data in our experiments.

are thresholded by a parameter θ (θ < 1); this means that,
if the abundance fraction of an endmember in a given pixel is
larger than θ , all the abundance fractions of the endmembers in
this pixel are set to 1/p, where p is the number of endmem-
bers used to generate the synthetic HSI. Finally, zero-mean
white Gaussian noise is added to generate the noisy synthetic
HSI data, in which the SNR is defined as

SNR = 10 log10

(
E[YT Y]
E[NT N]

)
(20)

where E[·] denotes the mathematical expectation.

B. Experimental Settings

Four experiments have been performed on synthetic
HSI data sets in order to account for the following important
aspects: 1) noise robustness; 2) sensitivity to the mixture
degree of pixels; 3) sensitivity to the number of endmembers;
and 4) sensitivity to the parameter σ . Concerning the noise
robustness, we have generated synthetic scenes with different
SNRs (10, 30, 50, 70 dB, +∞), in which +∞ means no
noise is imposed. Concerning the sensitivity of the method to
the mixture degree of pixels, we have considered the values
of θ of (0.6, 0.8) to threshold the abundance fractions of each
pixel (the larger the θ is, the lower the degree of mixture
in each pixel). Concerning the sensitivity to the number
of endmembers, we have generated synthetic scenes with
different numbers of endmembers (4, 6, 8, 10). Concerning the
sensitivity to the parameter, it is important to note that, in our
newly proposed GMCA-HU method, we apply a threshold
descent strategy during the iteration, so only one parameter
needs to be tuned beforehand, which is related with the final
threshold computation σ . This parameter σ will be multiplied
by the estimated noise standard deviation, and then used as a
threshold value for the next iteration. When the SNR is low,
σ is generally set to a value smaller than 1, so as to suppress
the noise disturbance in the decomposed results, while for
higher SNR values, σ is usually within the range of [1, 10]
(the higher the SNRs, the larger the σ ). So in the last synthetic
experiment, we choose a synthetic HSI scene simulated with
six endmembers and the threshold corresponding abundance
fractions with 0.8. Then, a series of different values of σ was
analyzed experimentally.

Furthermore, the other parameters that are required for
the GMCA-HU method were fixed in advance in all exper-
iments. Concretely, for the outer layer optimization iteration,
the maximum number of iterations is set to 500, while for the
two inner layer optimization iterations, the maximum number
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TABLE I

AVERAGE SAD BETWEEN THE OBTAINED AND REFERENCE (GROUND-TRUTH) ENDMEMBER
SIGNATURES FOR THE GMCA-HU METHOD (SIMULATED DATA EXPERIMENTS)

TABLE II

RMSE BETWEEN THE ESTIMATED AND REFERENCE (GROUND-TRUTH) ABUNDANCES

FOR THE GMCA-HU METHOD (SIMULATED DATA EXPERIMENTS)

of iterations are both set to 80. When starting the optimization
process, M is initialized with the first p principal components
(p being the number of endmembers), and S is initialized
as MT Y. Then, the alternation between ANLS updates and
constrained FBS updates is executed a few times, thus com-
pleting the initialization process. It should be noted that, in the
initialization process, the regularization parameter λ is set to 0
for the FBS updates. That is, before entering the main iteration
looping, it is hoped that both the obtained M and S satisfy the
nonnegative constraint, and with smaller residual and noise
interference, thus accelerating the iterative convergence of the
algorithm. After that, in the main loop, the initial value of λ is
set to ‖MT (MS − Y)‖∞, which forces the coefficients of S
to be nonincreasing in the first iteration, and then gradually
descend to the σ × res_std, where res_std is the estimation
of noise standard deviation on the current residual, which can
refine the solution while preserving continuity.

For the other compared unmixing methods, the corre-
sponding parameters have been set follows. Concerning
the MVC-NMF, the VCA + FCLS is first executed to
generate an initial endmember set and abundances. Then,
80 iterations (with a tolerance value of 1e-6) are used
to achieve a relatively robust stopping condition, and the
corresponding annealing temperature is set to 0.015. For the
R-CoNMF unmixing method, parameter settings have been
optimized as detailed in [27].

Finally, we would like to emphasize that all the experi-
ments were conducted using MATLAB R2015a in a desktop
PC equipped with an Intel Core i7 CPU (at 3.6 GHz) and
32 GB of RAM.

C. Analysis of the Experimental Results

1) Noise Robustness: In this experiment, we conduct a
comparative analysis on robustness to noise of the pro-
posed unmixing method. As described above, five different
SNR levels are considered, varying from 10 dB to +∞
(no noise added) with a step size of 20 dB. Tables I and II show

the results of the SAD and RMSE metrics obtained by the
proposed GMCA-HU method under different SNRs, as well
as different numbers of endmembers and degrees of mixture in
the simulated pixels. As can be observed from Tables I and II,
although the SAD value is smaller when the SNR becomes
larger, the difference is not obvious, especially when the
number of endmembers and the degree of mixture are low.
As the number of endmembers increase, the results for SNRs
below 30 dB are similar to those for SNRs above 30 dB.
As a result, it can be concluded that the proposed GMCA-HU
exhibits robustness with respect to different SNRs.

In order to outline the superiority of the proposed
GMCA-HU method, Fig. 3 provides a comparison between
the average SAD of four different unmixing methods under
different SNRs, different number of endmembers, and different
mixture degrees of the simulated pixels. In Fig. 3, the first
row illustrates the SAD results under a low mixture degree
scheme (with θ = 0.8), while the second row illustrates the
SAD results under a higher mixture degree scheme (with
θ = 0.6). As can be observed, all the considered four unmixing
methods exhibit a decrease in the SAD results when the SNR
decreases. When the SNR is high, the R-CoNMF generally
achieves the best unmixing result for a low degree of mixture
in the simulated pixels. However, when the SNR becomes
lower, the noise corruption introduced in the MVC-NMF and
R-CoNMF algorithms is much higher than that introduced
in our GMCA-HU method. On the contrary, the GMCA-HU
exhibits much better robustness to noise. This is due to the fact
that both the MVC-NMF and R-CoNMF impose a simplex
volume constraint, which is very sensitive to noise.

2) Mixture Degree of Simulated Pixels: The purpose of this
experiment is to analyze the performance of the GMCA-HU
method under different mixture degrees of simulated pixels.
Generally, the lower the mixture degree, the better the SAD
results. As we can observe from the first row of Fig. 3,
GMCA-HU method is not the best one for a low mixture
degree (R-CoNMF obtains the best SAD scores in most cases).
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Fig. 3. Comparison of the average SAD of different unmixing methods under a high mixture degree of simulated pixels (θ = 0.6) and a low mixture degree
of simulated pixels (θ = 0.8), respectively.

However, as shown in the second row of Fig. 3, the
SAD results of GMCA-HU are the best under a high mixture
degree of pixels. Moreover, we can observe from Table I that
GMCA-HU is nonsensitive to the mixture degree, especially
in the case of low SNRs. Overall, the experimental results
reveal that GMCA-HU method has an obvious insensitivity
with respect to the mixture degree, which is a highly desir-
able feature. Considering that very highly mixed pixels are
present in many real HSI scenes, such merit is expected to
bring significant application value to our newly developed
method.

Furthermore, we illustrate the obtained abundance maps,
as well as the RMSE results calculated by using (19),
of the four compared methods under different mixture degrees,
in which the results are obtained from a synthetic HSI scene
simulated with four endmembers and SNR of 10 dB, as shown
in Figs. 4 and 5, respectively. Fig. 4 shows the estimated
abundance maps under a low mixture degree scheme (with
θ = 0.8), where the first column displays the ground-
truth abundances (without noise contamination) and the other
columns display the abundances estimated by different unmix-
ing methods. It can be observed that the abundances of
R-CoNMF method are closer to the ground-truth abundances
than the other three methods. For our proposed GMCA-HU
method, though the result of RMSE is weaker than the
R-CoNMF method, and not much better than the MVCNMF
method, it can maintain spatial consistency and morpho-
logical characteristics as R-CoNMF method. While for the
VCA + FCLS method, it suffers from certain ambiguities in
terms of spatial distribution and morphology, especially for
the first and third abundance maps, which all show a very
ambiguous spatial distribution. Moreover, in the case of a
high mixture degree scheme (with θ = 0.6, shown in Fig. 5),
the spatial distribution and morphology are better maintained
by the GMCA-HU method, while for the R-CoNMF and
MVCNMF methods, certain degree of over-smoothing still
exist in the obtained abundance maps.

3) Number of Endmembers: Finally, we conducted an
experiment to investigate the sensitivity of the GMCA-HU
method to the presence of different numbers of endmembers

in the simulated data. In general, the higher the number
of endmembers, the more difficult the unmixing process is.
However, it can be observed from Fig. 3 that the SAD results
of the GMCA-HU method are stable for different numbers
of endmembers. For example, when the simulated scene was
constructed using eight and ten endmembers, our GMCA-HU
still provided very good SAD results. A similar situation can
be observed from the SAD results of the R-CoNMF method
(for example, when eight endmembers were simulated in the
scene, R-CoNMF was better than GMCA-HU while, when ten
endmembers were simulated, our GMCA-HU provided better
results). In addition, under a high mixture degree scheme,
GMCA-HU obtained the best SAD scores (especially for a
large number of endmembers). As a result, we can conclude
that the proposed GMCA-HU method is more stable than other
unmixing methods when the number of endmembers increases.

4) Analysis on the Parameter σ : In this experiment,
we report the plots of average SAD based on different para-
meter σ by using generated synthetic scene. The adopted
synthetic image has six number of endmembers, and under
low degree of mixture (with threshold of abundance frac-
tions is 0.8). Four different SNRs, including 10, 30, 50,
and 70 dB, are considered in this experiment. For the SNRs
of 10 and 30 dB, the parameter σ is set from 0.5 to 5 with
a step size of 0.5. While for the SNRs of 50 and 70 dB,
the parameter σ is set from 1 to 10 with a step size of 1.
Beyond that, the other parameters that are required are all the
same as Section III-B. The plots of average SAD by using
different parameter σ are given in Fig. 6.

It can be observed from Fig. 6 that, for the low SNRs
circumstances, such as 10 and 30 dB, the smaller the σ ,
the better the average SAD result. When SNR is 10 dB, the
best SAD result comes from σ = 0.5, while for the 30 dB,
the best SAD result comes from σ = 1. However, different
results are reflected in the high SNR circumstances, such as
50 and 70 dB, the average SAD results go through a process of
decreasing and then slowly increasing. When SNR is 50 dB,
the best SAD result comes from σ = 3, while for the 70 dB,
the best SAD result comes from σ = 4. As a result, it is
expected that when the SNR is low, σ is suggested to set
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Fig. 4. Abundances estimated by different unmixing methods for a simulated scene with four endmembers, low mixture degree (θ = 0.8), and
low SNR (10 dB).

a value smaller than 1, so as to suppress the noise disturbance,
while for higher SNR, σ is suggested to set larger than 1, and
the higher the SNRs, the larger the σ .

IV. EXPERIMENTS ON REAL DATA

In this section, two benchmark HSI data sets are chosen
for assessing the performance of the proposed GMCA-HU
method: an urban scene acquired by the hyperspectral digital
image collection experiment (HYDICE), and the Cuprite scene
acquired by the Airborne Visible Infra-Red Imaging Spectrom-
eter (AVIRIS).

A. Experiments on the HYDICE Urban Scene

The Urban scene has a size of 307 × 307 pixels and
210 spectral bands and was acquired by the HYDICE at
Copperas Cove, TX, US, in October 1995. This scene has
a spatial resolution of 2 × 2 m2 and spectral resolution
of 10 nm (covering the wavelength range from 0.4 to 2.5 μm).
After removing those spectral bands with dense water
vapor, we retain a total of 162 bands in our experiments.
Fig. 7(a) shows a false color composition of the image, and
Fig. 7(b) shows four endmember classes: asphalt, roof, grass,
and tree that are used as representative ground classes in the
scene. As can be seen in Fig. 7, the signatures of grass and
trees exhibit very similar spectral shape, which makes their
separation difficult.

Table III presents the SAD results obtained by the four
compared unmixing methods for the Urban scene, including

TABLE III

SAD BETWEEN THE REFERENCE AND THE OBTAINED ENDMEMBERS
(USING DIFFERENT METHODS) FROM THE URBAN HYDICE SCENE

the SAD results of each ground class and an average value. For
our proposed GMCA-HU method, the threshold computation
parameter of σ is set to 10, and the other parameters that
are required are the same as mentioned in Section III-B.
As can be observed, our GMCA-HU method obtained a
very good unmixing result in terms of SAD, especially for
the grass and tree classes, whereas the other methods found
certain difficulties with these two ground classes. In fact, our
method benefits from the spatial morphological diversity that
is presented in the scene, which can help separate spectrally
similar ground classes (such as grass and trees) due to their
diverse spatial distribution and structural details. In addition,
Fig. 8 shows the obtained endmember signatures and the
corresponding abundance maps, in which the grayscale values
(from black to white) represent abundance values (from 0 to 1).
For comparison purposes, we also give the reference abun-
dance maps (shown in the first row of Fig. 8). In Fig. 8,
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Fig. 5. Abundances estimated by different unmixing methods for a simulated scene with four endmembers, high mixture degree (θ = 0.6), and low
SNR (10 dB).

Fig. 6. Plots of average SAD obtained by different parameter σ
under different SNRs of the synthetic data sets. (a) SNR = 10 dB.
(b) SNR = 30 dB. (c) SNR = 50 dB. (d) SNR = 70 dB.

we can observe the very clear spatial distribution of the four
considered ground classes. The asphalt class, for instance,
displays a very distinctive linear structure. For the grass class,
a regional block structure can also be observed. For the roof
and tree classes, smaller patch-structures are scattered in the
scene. Overall, these abundance maps accurately represent the
spatial distribution of different classes in the scene. Moreover,
Fig. 8 presents a comparison of the obtained versus the

Fig. 7. (a) Urban HYDICE scene. (b) Endmember signatures considered in
experiments.

reference spectral signatures. It can be observed that the
spectral signatures match very well the reference grass and tree
classes. For the asphalt and roof, there still exist certain spec-
tral disturbances. Overall, the experimental results obtained
with the Urban HYDICE scene indicated the advantages
of using spatial morphological characteristics for unmixing
purposes.

B. Experiments on the AVIRIS Cuprite Scene

The second real HSI scene is the well-known Cuprite
data set, which was collected by the AVIRIS sensor on
June 19, 1997. The portion that is used in our experiments
has 250 × 191 pixels and 224 spectral bands covering
a wavelength range from 0.4 to 2.5 μm, with a spectral
resolution of 10 nm and spatial resolution of 20 m/pixel. After
removing bands of 1 and 2, 105–115, 150–170, and 223 and
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Fig. 8. Abundance maps and endmember signatures obtained for the Urban HYDICE scene by the proposed GMCA-HU method (for clarity, each obtained
signature is displayed together with its reference counterpart). (a) Asphalt. (b) Roof. (c) Grass. (d) Tree.

Fig. 9. Mineral distribution map in the Cuprite mining district.

224 due to water absorption and low SNR, we retain a total
of 188 reflectance channels to be used in the experiments. The
Cuprite site is well understood mineralogically and has several
exposed minerals of interest, all included in the USGS library
(used in this article to obtain reference counterparts for each
extracted endmember). Fig. 9 shows a mineral distribution map
in this Cuprite mining district, which is available online.1 In
the following experiments, we will select a few highly repre-
sentative mineral spectra from the USGS library to examine
the purity of the endmembers extracted by different unmixing
methods from the Cuprite mining district.

1http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif

TABLE IV

SAD BETWEEN THE REFERENCE AND THE OBTAINED ENDMEMBERS

(USING DIFFERENT METHODS) FROM THE AVIRIS CUPRITE SCENE

It should be mentioned that the number of endmembers
in this scene is very hard to determine due to the complex
composition of minerals. With this consideration in mind,
we adopted an assumption of 12 endmembers for the con-
sidered subscene, as it is commonly suggested in the public
literatures. For the adopted GMCA-HU method, the threshold
computation parameter of σ is set to 12, and the other
parameters that are required are the same as Section III-B.
Table IV presents the SAD results for each ground class
as well as an average value. The corresponding estimated
endmember signatures and abundance maps are also presented
in Figs. 10 and 11.
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Fig. 10. Endmember signatures extracted from the AVIRIS Cuprite scene
by the proposed GMCA-HU method (for clarity, each obtained signature is
displayed together with its USGS library signature counterpart). (a) Alunite.
(b) Andradite. (c) Buddingtonite. (d) Chalcedony. (e) Dumortierite.
(f) Jarosite. (g) Kaolinite. (h) Kaolin-1. (i) Kaolin-2. (j) Montmorillonite.
(k) Muscovite. (l) Nontronite.

It can be observed from Table IV that, for the Mus-
covite and Nontronite minerals, GMCA-HU and R-CoNMF
obtained lower SAD scores than the MVC-NMF and VCA +
FCLS methods, while for the Dumortierite, Kaolinite and
Kaolin-1 minerals, GMCA-HU obtained better SAD scores
than the other three methods. Considering the average
SAD results, GMCA-HU obtained a very promising result.
However, the advantages of GMCA-HU in this particular case
are not so obvious. The main reason is that the abundance
maps of some mineral classes tend to be fragmented and
with little spatial consistency, thus weakening the impact
of including spatial morphological diversity in the unmixing
process.

In Fig. 10, the spectral signatures of the endmembers
extracted by our method and their corresponding USGS library
signature counterparts are shown. In this case, the match
between each endmember and its corresponding USGS library
signature has been built by using both visual interpretation and
the SAD score between the obtained spectral signature and
its corresponding library signature. It should be emphasized
that, due to the complexity and variability of some of the
mineral classes, we compared the estimated endmember sig-
natures with the USGS library signatures (acquired in perfect
conditions). With this consideration in mind, the results from
Fig. 10 indicate that the endmembers estimated by our method
provide a good match with regard to the corresponding library
signatures.

Fig. 11. Abundance maps obtained for the Cuprite mineral scene by the
proposed GMCA-HU method. (a) Alunite. (b) Andradite. (c) Buddingtonite.
(d) Chalcedony. (e) Dumortierite. (f) Jarosite. (g) Kaolinite. (h) Kaolin-1.
(i) Kaolin-2. (j) Montmorillonite. (k) Muscovite. (l) Nontronite.

V. CONCLUSION AND FUTURE RESEARCH

In this article, a new blind unmixing method has been
developed for HSI. Our newly developed method is based
on GMCA, which naturally includes spatial information in
the unmixing process by accounting for the sparsity and
morphological diversity of the abundance maps associated
with each endmember. Furthermore, in order to obtain a sta-
ble optimization solution, an alternative iteration constrained
algorithm with a threshold descent strategy has been adopted.
The obtained experimental results reveal that the proposed
blind unmixing strategy can lead to stable and very accu-
rate results, able to include the spatial characteristics of the
scene when conducting the unmixing process, as well as fast
processing speed. As with any new approach, there are some
unresolved issues that deserve further consideration in the
future developments. First, although there is just one single
parameter (σ ) that needs to be tuned in our GMCA-HU
method, it is still hard to determine (considering that σ is
related with the noise standard deviation of the residual, how to
estimate the noise standard deviation more accurately deserves
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further investigation). Second, as shown in (9), the sparsity and
diversity of the coefficients can promote source separation.
However, considering the difficulty of the optimization solu-
tion corresponding to the transform domain, in our proposed
model we transfer the sparsity of coefficients into the sparsity
of the sources for simplicity. At this point, we emphasize that
sparse representation in the transformed coefficient domain is
more efficient than that in the source domain. Therefore, there
is a need to perform GMCA on the transformed domain in the
future developments.
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