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Abstract— Fast and accurate remote sensing image retrieval
from large data archives has been an important research topic
in the remote sensing research literature. Recently, hashing-based
remote sensing image retrieval has attracted extreme attention
because of its efficient search capabilities. Especially, deep remote
sensing image hashing algorithms have been developed based on
convolutional neural networks (CNNs) and have shown effective
retrieval performance. However, implementing a deep hashing
network tends to be highly expensive in terms of storage space
and computing resources to be suitable for on-orbit remote sens-
ing image retrieval, which usually operates on resource-limited
devices such as satellites and unmanned aerial vehicles (UAVs).
To address this limitation, we propose to hash a deep network that
in turn hashes remote sensing images. Specifically, we develop
a quantized deep learning to hash (QDLH) framework for
large-scale remote sensing image retrieval. The weights and
activation functions in the QDLH framework are binarized to
low-bit representations, which require comparatively much less
storage space and computing resources. The QDLH results in
a lightweight deep neural network for effective remote sensing
image hashing. We conduct extensive experiments on two public
remote sensing image data sets by incorporating several state-
of-the-art network architectures into our QDLH methodology
for remote sensing image hashing. The experimental results
demonstrate that the proposed QDLH is effective in saving
hardware resources in terms of both storage and computation.
Moreover, superior remote sensing image retrieval performance
is also achieved by our QDLH, compared with state-of-the-art
deep remote sensing image hashing methods.
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I. INTRODUCTION

W ITH the development of remote sensing technologies in
recent years, a large number of remote sensing images

have been collected by optical, synthetic aperture radar (SAR),
light detection and ranging (LiDAR) and other instruments.
The extensive databases of collected remote sensing images
comprise abundant information, which plays an important
role in many fields [1]–[3] such as environmental monitoring
and disaster rescue. However, the explosive growth of remote
sensing images renders a great challenge on how to retrieve the
desired images from tremendously large data sets effectively
and efficiently. In this scenario, remote sensing image retrieval
has attracted significant attention in the community.

According to image description strategies, traditional remote
sensing image retrieval algorithms are divided into two cat-
egories: text-based image retrieval (TBIR) [4] methods and
content-based image retrieval (CBIR) [5] methods. TBIR
methods rely mainly on manually annotated text information
to describe the content of the images, and it is inefficient and
unsuitable for large-scale remote sensing image retrieval tasks
due to the required extensive labor. In turn, CBIR methods
extract different types of visual features automatically for
image representation, and image retrieval is carried out based
on the features extracted by various similarity metrics. There
have been many works on context-based remote sensing image
retrieval [6]. However, the dimension of visual features can be
in the order of thousands, which requires enormous storage
space and consumes considerable time for linear similarity
scan on a big image data set.

In order to cope with the curse of dimensionality, many
approximate nearest neighbor (ANN) search methods [7] have
been developed for CBIR tasks. Among these various ANN
search methods, hashing [8] is a powerful technique for big
data retrieval because of its excellent ability in the task of
compacting features efficiently. Hashing algorithms generally
learn a set of hash functions to project the original images from
high-dimensional feature space to a low-dimensional hamming
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space, in which the images are represented by binary hash
codes and the intrinsic similarity structure is preserved as well.
Thus, the image similarity can be efficiently evaluated based
on the hamming distance of the binary hash codes instead
of the Euclidean distance, which is of great importance for
large-scale image processing tasks. Compared with traditional
CBIR algorithms, the hashing algorithms significantly reduce
the amount of memory storage occupation and extremely
improve the retrieval speed because the image similarity is
efficiently measured through the hamming distance between
two hash codes.

Classical hashing methods, such as locality sensitive hash-
ing (LSH) [9], spectral hashing (SH) [10], and iterative quan-
tization (ITQ) [11], [12]–[15] have been successfully applied
to various big data tasks including large-scale image retrieval.
In recent years, hashing algorithms have been introduced to
the field of remote sensing image retrieval. Lukac et al. [16]
proposed a parallelization of kernelized locality-sensitive
hashing (KLSH) using graphical processing units (GPUs),
in order to perform fast parallel satellite image retrieval.
Demir and Bruzzone [17] and Reato et al. [18] introduced
kernelized unsupervised and supervised hashing into scalable
remote sensing image retrieval and further developed a mul-
ticode hashing scheme based on the segmented regions of
remote sensing images. Li and Ren [19] and Li et al. [20]
proposed a fast unsupervised hashing algorithm for large-scale
remote sensing image retrieval and extended it to an online
scheme to handle constantly updated remote sensing images.
Ye et al. [21] developed a multifeature learning method on the
remote sensing image hashing problem.

Most of the existing remote sensing image hashing methods
rely on hand-crafted features for hash code learning. It is
commonly observed that such low-level hand-crafted features
cannot accurately reflect high-level semantic information con-
tained in the images. Therefore, the retrieval accuracy of
previous remote sensing image hashing methods fails to meet
the demands of practical applications in many cases. In order
to benefit from the representational power of deep learning
techniques, many deep convolutional neural networks (CNNs)
have been adopted for image understanding tasks [22]–[30]
(e.g., classification [31], detection [32], and semantic segmen-
tation [33]) in the computer vision and machine learning fields.
In this scenario, deep hashing networks (DHNs) have been
developed for natural image retrieval tasks. Tang and Li [34]
present a weakly supervised multimodal hashing model,
which is trained based on the weakly supervised tag infor-
mation and visual information for scalable social image
retrieval. Considering the special characteristics of remote
sensing images, Li et al. [35], [36] introduced deep hashing
neural networks (DHNNs) into large-scale remote sensing
image retrieval tasks and obtained significant improvements in
retrieval accuracy over previous remote sensing image hashing
methods. Han et al. [37] presented a cohesion intensive deep
hashing to overcome the data imbalance problem of remote
sensing image data set.

DHNNs have achieved state-of-the-art performance for
remote sensing image retrieval purposes [35]. They are sup-
posed to operate on a comparatively computational powerful

TABLE I

MEMORY AND COMPUTATION CONSUMPTION OF
DIFFERENT DEEP MODELS

work station and retrieve historical remote sensing images.
On the other hand, on-orbit retrieval of remote sensing images
that are captured in real-time is also an important issue.
A specific scenario is that a satellite or a UAV, which is
just equipped with limited computational resources, operates
on-orbit and captures a large number of images in real-time.
The wireless bandwidth for real-time communication between
the remote sensing device and the Earth is limited, and it
would be beneficial that only images with important features
rather than all captured images are transited from the remote
sensing device to the Earth. This requires image retrieval on
the (resource limited) remote sensing device. However, there
remain important problems that hinder deep hashing from such
practical remote sensing uses.

First, the CNNs have extensive requirements for hardware
resources (i.e., memory and computational power). One major
reason for the computational overloads is that the deep net-
works are usually characterized by a large number of para-
meters with float values. For example, as shown in Table I,
the widely used VGGNet model [38] requires more than
500 MB of storage and over 15 B floating-point opera-
tions (FLOPs) to classify a single 224 × 224 image. When
the network becomes deeper, these numbers are even larger.
Therefore, the existing DHNNs are difficult to be deployed
on resource-limited remote sensing devices such as satellites
and UAVs for on-orbit image retrieval applications. To the
best of our knowledge, despite the availability of some deep
model compression schemes introduced to natural image clas-
sification problems, the topic of how to develop compressed
DHNNs for remote sensing image retrieval has not been fully
studied yet. Existing neural network compression methods are
mainly divided into two categories: one is to change the struc-
ture of the model, such as network pruning [39], and the other
is the low-bit expression of parameters [40], [41]. Though
a pruned network reduces the number of parameters and
operations, it requires FLOP for processing the remote sensing
images. The FLOPs are not a desirable option for on-orbit
remote sensing image retrieval with embedded devices such
as field programmable gate array (FPGA), which essentially
requires fixed-point operations for parallel processing and fast
computation. Second, remote sensing image data sets usually
suffer from the data imbalance problem, which occurs when
the number of retrieved images is far less than the number of
irrelevant images in a data set. The data imbalance problem
requires the hash codes within one class to exhibit strong
intraclass similarity and discriminate against a large number of
images from other classes. However, existing remote sensing
retrieval algorithms usually use indiscriminate hash losses for
characterizing image pairs [35], and tend to neglect the data
imbalance problem.
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Taking the above issues into consideration, this article
presents a novel quantized deep learning to hash (QDLH)
framework for remote sensing image retrieval. Specifically,
the hash codes of remote sensing images are learned through
a quantized DHN, in which the filter weights are quantized
as 1-bit representations and the activations are quantized as
2-bit representations. After compression, our QDLH model
significantly saves memory for convolutional computation,
which provides an efficient solution for practical applications
on resource-limited remote sensing devices such as satellites
and UAVs. In addition, our QDLH employs a class-intensive
pairwise loss function in the hash layer learning to address the
data imbalance problem and generates more accurate binary
hash codes. The main contributions of this article can be
summarized as follows.

1) We present a novel strategy of hashing nets for hash-
ing. Our new strategy exploits hashing techniques from
two perspectives. First, a deep network is hashed with
all weights and activation quantized. This effectively
compresses the deep net. Second, the hashing net is
used for hashing remote sensing images for efficient
retrieval. To the best of our knowledge, we are among
the first ones to develop a deep neural network quan-
tization framework for remote sensing image hashing
and retrieval tasks. This validates the possibility of using
quantized DHNs in remote sensing observation devices
with limited resources, such as satellites and UAVs.

2) We introduce the weighted pairwise entropy loss func-
tion [37], which have been used in penalizing full
precision nets for remote sensing image retrieval, into
the training procedure of our QDLH framework. It inten-
sifies the intraclass cohesion of hash codes and improves
the remote sensing image retrieval accuracy.

3) We evaluate the proposed QDLH extensively on two
public remote sensing image data sets with four pop-
ular CNNs (i.e., AlexNet, VGGNet, GoogLeNet, and
ResNet-18) for remote sensing image retrieval tasks.
Our experimental results demonstrate the efficiency and
effectiveness of the proposed framework, which achieves
state-of-the-art performance for remote sensing image
retrieval.

The remainder of this article is organized as follows.
Section II gives a brief review of traditional full precision
deep neural networks. Section III presents the proposed QDLH
framework in detail. Section IV presents the experiments and
analyzes the results of two public remote sensing image data
sets. The final section concludes this article with some remarks
and hints at plausible future research lines.

II. REVIEW OF FULL PRECISION DEEP NETWORKS

As a prerequisite for our quantized deep hashing framework,
we review the full precision deep networks in terms of
CNNs with float weights and activations. Despite the great
representational power, a full precision deep network has two
disadvantages, that is, the large storage requirement and the
high computational complexity, rendering a challenging task
for deploying it on a source-limited remote sensing device.

Fig. 1. Structure of a neuron. The neuron receives signals from other neurons
as input through a weighted connection, and then an activation function is used
to produce the output y of the neuron.

We take the basic CNN as an example to briefly analyze
the computational overloads required by the deep networks.
A CNN is composed of layers of processing units (as shown
in Fig. 1) that roughly model the computations simulating
neurons. Each activation function behaves in terms of a neuron
unit as follows:

y = g

(
K∑

k=1

wkik

)
(1)

where wk is a float weight, ik is the input of the neuron,
and y is the output of the neuron. K is the number of
neurons connected by the neuron and g(·) is the nonlinear
activation function. The large storage requirement of CNNs
arises from the fact that the number of parameters is large
and the parameter values are of the float format which is
represented with long word width. In the CNN with one
neuron unit formulated as (1), there are K (e.g., 10 000)
parameters (e.g., wk) for each layer and the CNN may have
tens of thousands of layers. Each parameter wk is formatted
by a float value that occupies 128 bits or more. The high
computational complexity of full precision CNNs is caused
by a large number of float value-based operations including
additions, subtractions, and multiplications. The operation in
terms of (1) for each processing layer requires at least K
float multiplication in addition to nonlinear procedures and
additions. The deep network requires considerably multiple
times of such operations.

The widely used AlexNet [42] has eight layers in total,
involving 61 M weight parameters and more than 729 M
FLOPs for one round of inference execution. The execu-
tion overloads of other deeper networks such as GoogLeNet
and ResNet are even larger. Although these CNNs can be
trained on high-performance GPUs or central processing
unit (CPU) clouds efficiently, operating these deep networks
on resource-limited remote sensing devices remains a chal-
lenging problem.

In order to make quick responses by using a deep network
deployed on a remote sensing device, both the deep network
and the remote sensing information should be compressed.
This is achieved by three major procedures. First, the float
values of parameter [e.g., wk in (1)] are converted to binary
representations, which save storage space. Second, based on
the binarized parameters, original operations such as mul-
tiplications [e.g., K multiplications in (1)] based on float
values are instead computed with binary manipulations, which
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Fig. 2. Illustration of the proposed QDLH framework. The QDLH is composed of a DFENet and HCLNet. The DFENet consists of several quantized
convolution layers, and it extracts deep features from the input remote sensing images. The HCLNet contains a fully connected layer and a scale-tanh layer,
and it produces the binary hash codes for the input images through a weighted pairwise loss function.

saves computational power. Third, the remote sensing data are
compressed in terms of hash codes whose Hamming distance
characterizes data categorization. It is clear that the underlying
manipulation of the three procedures transforms hash contin-
uous representations into binary. To this end, the overall novel
hashing framework will be presented in Section III.

III. QUANTIZED DEEP LEARNING TO HASH

In this section, we introduce our QDLH framework for
remote sensing image retrieval. In addition, the sections are
organized as follows. Section III-A describes the overall archi-
tecture of our QDLH, which is composed of a quantized deep
convolutional feature extraction net and a hash code learning
net (HCLNet). Sections III-B and III-C describe these two
networks in detail, separately.

A. Overall Architecture

Our QDLH framework consists of a deep feature extraction
net (DFENet) and an HCLNet. As shown in Fig. 2, the DFENet
can take the form of various off-the-shelf deep CNN archi-
tectures such as AlexNet, VGGNet, GoogLeNet, and ResNet.
It generates high-level semantic feature representations. Dif-
ferent from existing DHNNs [35], which adopt full precision
deep nets, we employ a quantized DFENet (Q-DFENet) for
efficient image feature extraction. As illustrated in Fig. 2,
we quantize the kernel weights of the convolutional layers
into 1-bit forms and the activations of each layer output into
2-bit forms, separately. The HCLNet contains a fully con-
nected layer and a scale-tanh layer. The fully connected layer
maps high-dimensional features of the DFENet to a lower
L-dimensional space. The scale-tanh layer further converts the
L-dimensional real value feature representations into binary

hash codes. In order to obtain more accurate hash codes
for the remote sensing images, we adopt a class intensive
pairwise loss function in the HCLNet to address the data
imbalance problem. Different from the DHNNs in [35] which
treat each image pair equally, our loss function makes the
hash codes within a scene to have strong intraclass similarity
and discriminate against a large number of images from other
classes.

In one training iteration, full precision weights are computed
through backpropagation. Then, the weights are quantized for
efficient forward computation. The network output for the next
training iteration is computed based on the quantized network.
Once the whole training procedure has finished, the deep net-
work is hashed such that a discrete representation is developed
for network weight characterization and inference.

B. Q-DFENet

In this section, we first introduce our Q-DFENet in detail.
The Q-DFENet is composed of many quantized convolutional
layers. Different from the traditional feature extraction network
used in deep remote sensing image hashing, the quantized
convolutional layers we adopted in the feature extraction
network have binary convolutional kernel weights and 2-bit
activation functions, which lead to a lightweight network for
remote sensing image inference.

1) Weight Binarization: As we have introduced in Section I,
one main problem with the deep CNNs is its large mem-
ory consumption. Recently, it has been shown that weight
quantization achieves a very large reduction in memory [43].
As introduced in this article, the weight quantization methods
for deep nets include 2-bit quantization, ternary quantization,
and binary quantization. The representation accuracy would be
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higher if more bits are employed in weight quantization. How-
ever, more bits lead to larger resource consumption (i.e., stor-
age space and computation complexity) of the compressed
network. Therefore, one should seek a trade-off between accu-
racy and efficiency in real applications. We aim to develop a
quantized DHN for remote sensing image retrieval applications
on resource-limited embedded devices. Specifically, we focus
on the binary weight quantization scheme because the binary
convolutional operation can be realized efficiently based on
the logical units such as FPGA chips. In addition, according
to the previous works, the small accuracy loss of binary
quantization is usually acceptable compared with the improve-
ments for resource consumption. The experimental results
validate that our binary scheme achieves efficient performance
with acceptable accuracy. This strategy utilizes a binary filter
B ∈ {+1,−1}c×w×h where (c, w, h) represents channels,
width and height respectively, and a scale parameter α > 0
to approximate the full precision kernel weight W ∈ Rc×w×h,
as W ≈ αB. We assume kernels have no bias terms. The
convolutional operation is approximated as follows:

I ∗ W ≈ α (I ± B) (2)

where I represents the layer input, ∗ represents convolution
operations, and ± represents a convolution operation with
addition and subtraction operations. Without loss of generality,
let B ∈ {+1,−1}n and W ∈ Rn are denoted in vectors where
n = c × w × h. The goal of weight quantization is to make
the quantized value αB approximate the original value W as
much as possible. To this end, we define

G (B, α) = ‖W − αB‖2
2. (3)

By expanding (3), we obtain the following form:
G (B, α) = WT W − 2αWT B + α2BT B. (4)

Thus, the optimal approximation is formulated as

〈α̂, B̂〉 = arg min
α,B

G (B, α). (5)

The weight W can be obtained when we find the optimal
binary weight B̂ and scale parameter α̂ and WT W can be con-
sidered as a constant value in (4) and (5). In addition, BT B = n
is also a constant value due to B ∈ {+1,−1}n. Furthermore,
α is a positive and constant value when computing B̂, and the
optimal solution of B̂ is simply obtained by

B̂ = arg max
B

{
WT B

} = sign (W)

s.t. B ∈ {+1,−1}n . (6)

Then we compute for the optimal scale parameter value α.
According to the above analysis of (4), the optimization
function for finding α is converted to

G
(

B̂, α
)

= α2n − 2αWT B̂. (7)

The derivative of the above equation is

∂G
(

B̂, α
)

∂α
= 2αn − 2WT B. (8)

Fig. 3. Illustration of (a) ReLU function, (b) 2-bit half-wave Gaussian
quantizer of ReLU, and (c) clipped ReLU function.

By setting the derivative in (8) to be zero, the optimal scale
parameter α̂ is computed as follows:

α̂ = WT B̂
n

. (9)

By substituting the optimal B̂ = sign(W) into (9), the solution
of optimal α̂ is given as

α̂ = WT sign (W)

n
=
∑ |Wi |

n
= 1

n
‖W‖�1. (10)

We observe that the optimal scale parameter α̂ is the mean
value of �1-norm of W. B is the binary representation of the
full precision weights in W. It plays a major role in compress-
ing the deep network in terms of hashing nets. In this way,
the full precision weight term W is quantized to the binary
weight term B, resulting in tremendous memory reduction for
image inference. Furthermore, complex convolution operations
can be replaced by simple addition and subtraction operations.

2) 2-Bit Activation Quantization: Although the filter weight
quantization reduces the required memory and does not
involve multiplication during the convolution operation, addi-
tion and subtraction operations require FLOPs because the
input of the current layer and the output of the previous layer
are float values. In order to further compress the convolutional
network and accelerate the convolution operation, we conduct
activation quantization to map the output of each layer to
several discrete values. However, the activation quantization
is more difficult than the weight quantization because the
quantized activation functions often suffer from the problem
of derivative vanishing, which gives rise to great difficulty for
backpropagation learning of the whole network. A rectified
linear unit (ReLU) activation function is often adopted in
the deep networks and a half-wave Gaussian quantization
method [44] is employed for ReLU quantization.

A ReLU retains the biological inspiration of a neuron, which
is activated only when the input exceeds a threshold. The
ReLU has the following form [as seen in Fig. 3(a)]:

g (x) =
{

x, x ≥ 0;
0, x < 0.

(11)

A quantizer Q(x) is defined as a piecewise constant function
that maps all values of x into a quantization level. Considering
that the activation function ReLU is a half-wave rectifier
and the dot-product in (1) tends to be close to a Gaussian
distribution, we adopt a half-wave Gaussian quantizer for Q(x)
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with the following form:

Q (x) =
{

qi , if x ∈ (ti , ti+1
]

0, x ≤ 0
(12)

where qi ∈ R
+(i = 1, 2, . . . , m) represents different quanti-

zation values and ti ∈ R
+(t1 = 0 and tm+1 = +∞) is the

optimal quantization parameter for the Gaussian distribution.
In addition, a constant quantization interval � = ti+1 − ti
is adopted to guarantee a uniform quantizer. The optimal
quantization parameters of the uniform half-wave Gaussian
quantizer q∗

i and t∗
i only depend on the mean and variance

of the dot product distribution. Furthermore, q∗
i and t∗

i are
obtained by the Lloyds algorithm [45], which is similar to the
k-means algorithm.

We utilize a batch normalization layer before activation
and it forces the responses of each convolutional layer to
have zero mean and unit variance. The Lloyds algorithm is
applied to the data from the entire nets to generate a single
quantizer for forward inference in all layers. We adopt a
2-bit half-wave Gaussian quantizer (m = 3) for activation
quantization, as shown in Fig. 3(b).

The half-wave Gaussian quantizer is a stepwise function
whose derivative is almost zero. It may cause the vanishing
gradient problem during the backpropagation learning of the
deep networks. In order to address this problem, we adopt
a piecewise function, that is, clipped ReLU [see Fig. 3(c)],
to approximate ReLU and its half-wave Gaussian quantizer in
backpropagation. The clipped ReLU is formulated as follows:

Q̃c (x) =

⎧⎪⎨⎪⎩
qm, x > qm;
x, x ∈ (0, qm] ;
0, otherwise.

(13)

The reason for using the clipped ReLU is that it not only
matches with the half-wave Gaussian quantizer on the tail but
also is endowed with nonzero gradients in the interval (0, qm].
The clipped gradients enable a stable optimization, especially
for CNNs [46]. Finally, the original activation function ReLU
is quantized to a 2-bit half-wave Gaussian quantizer in the
forward step and approximated with a clipped ReLU in the
backpropagation.

3) Efficiency Analysis: The Q-DFENet is efficient in terms
of both memory and computation. A comparison of efficiency
analysis for different deep nets is shown in Fig. 4. We observe
that the traditional full precision nets require addition, subtrac-
tion, and multiplication for convolutional operations. In con-
trast, the Q-DFENet merely requires bit count operations.
In addition, about 32× memory is reduced by storing the
binary model parameters instead of the real values with float
precision. Consequently, the Q-DFENet is very suitable to be
applied to the embedded remote sensing devices with limited
resources for online remote sensing image processing. The
detailed experimental performance analysis for remote sensing
image hashing with the Q-DFENet will be given in Section IV.

C. HCLNets

1) Hashing Layers: In this section, we describe our
HCLNet. As shown in Fig. 2, the HCLNet consists of a

Fig. 4. Comparison of deep CNNs with different kinds of filter weights and
activations.

Fig. 5. Illustration of (a) sign, (b) sigmoid, and (c) scale-tanh functions.

hash layer and a scale-tanh layer that converts the extracted
deep image features to binary hash codes. The fully con-
nected hash layer maps the remote sensing images from
high-dimensional deep feature space to a lower L-dimensional
real value code space and the scale-tanh layer further converts
the L-dimensional real value codes to binary hash codes.

Intuitively, the Heaviside function (i.e., sign function) may
be the most effective activation function in the fully connected
hash layer to produce discrete binary codes for hashing
directly. However, the derivative of the sign function is zero
almost everywhere, severely increasing the difficulty of the
backpropagation learning for the whole network. The sigmoid
function is often used for approximation in the existing deep
remote sensing image hashing methods [35]. However, the sig-
moid function is a continuous function and its output is not
discrete. An additional threshold is usually conducted to obtain
the final hash codes, and it may lead to a big quantization
error and decreased retrieval performance. In order to generate
binary hash codes from the network directly, inspired by hash-
net [47], we place a scale-tanh layer after the fully connected
hash layer to gradually approximate the sign function. The
illustrations of the sign, sigmoid, and scale-tanh function are
shown in Fig. 5. The scale-tanh has the following form:

lim
τ→∞ tanh (τ y) = sign (y) =

{
+1, y ≥ 0

−1, y < 0
(14)

where τ is a scale parameter. By gradually increasing τ in each
iteration of the backpropagation learning, the scale-tanh comes
closer to the sign function, and finally, the layer produces
exactly binary hash codes without the need for an additional
threshold.

2) Class Intensive Objective Function: After introducing
our deep hash network structure, we describe the objective
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function which is used for the whole network learning. One
widely used objective function is the pairwise loss func-
tion [35] that learns the parameters and hash codes for remote
sensing images. However, the DHNNs method [35] treats each
image pair equally in learning. In practical remote sensing
operations, different classes tend to have considerably different
numbers of images. In order to address this data imbalance
problem, we employ a class-intensive pairwise loss function
for model training.

Given a remote sensing image data set with N images and
their semantic class labels ui , i = 1, 2, . . . , N . We define
C = {ci j}N×N as a common class indicator matrix. If the
image pair ui and u j have the same label, ci j = 1, and
otherwise ci j = 0. In addition, H ∈ {−1,+1}L×N denotes
the corresponding hash code matrix output from the final
layer of our network for the whole data set, where each
column hi represents one image and L is the hash code length.
The inner product hi

T h j is used to measure the hamming
distance between two hash codes. Specifically, a big hi

T h j

value reflects a small hamming distance. Our goal is to make
the hamming distance between hash codes of similar image
pairs as small as possible, and vice versa. In this scenario, for
each image pair, the conditional probability P(ci j |hi , h j ) is
defined as

P(ci j |hi , h j ) =
(

1

1+e−λhi
T h j

)ci j
(

1− 1

1+e−λhi
T h j

)1−ci j

(15)

where λ is a hyperparameter whose value is less than 1. Specif-
ically, if the image pair ui and u j are similar, a large value
of inner product hi

T h j is obtained, leading to a large value of
P(ci j = 1|hi , h j ), and vice versa. Then the log-likelihood of
H can be derived as follows:

log P (C|H) =
N∑

i, j=1

[
log
(

1 + eλhi
T h j

)
− λci j

(
hi

T h j
)]

. (16)

The above log-likelihood function in (16) has been widely
adopted in deep hashing included [35]. However, data imbal-
ance normally exists in remote sensing image hashing and
retrieval. Specifically, the number of relevant images to the
target image is usually far less than the number of irrelevant
images in the data set. Therefore, we employ a weight para-
meter γi j to address this data imbalance problem [37], which
leads to a weighted log-likelihood function as follows:

L =
N∑

i, j=1

γi j log P
(
ci j |hi , h j

)
=

N∑
i, j=1

γi j

[
log
(

1 + eλhi
T h j

)
− λci j

(
hi

T h j
)]

(17)

where

γi j =
{

N/Ni , ci j = 1

N/ (N − Ni ) , ci j = 0
(18)

and Ni represents the number of images relevant to the
i th image. γi j is the weight for each training pair, which is
used to tackle the data imbalance problem by weighting the
training pairs according to the importance of misclassifying

that pair. Finally, the class-intensive log-likelihood loss func-
tion is formulated by minimizing the following problem for
the whole network:
min

	
L = min

	

N∑
i, j=1

γi j

[
log
(

1 + eλhi
T h j

)
− λci j

(
hi

T h j
)]

(19)

where 	 represents the whole set of parameters for the
proposed quantized DHN. The backpropagation algorithm is
applied to computing the optimal values for the parameters.
When Ni < N − Ni , the weight parameter γi j enables the
image similarities within the same remote sensing scene to
play a more dominant role than those from different scenes
in the learning procedure. Thus, we obtain more accurate
hash codes for the remote sensing images and the retrieval
performance is improved over subtle quantization errors.

D. Observations

Section III-B has described how to quantize a full precision
deep network into that with binary weights. Section III-C
has described how to binarize the network outputs, that is,
enabling the network to output a piece of hashing code for
representing one remote sensing image. Studies on hashing
models [43], [48] into quantized representations have been
recently conducted in the literature. Most of these quantized
models are applied to tasks such as regression and recognition,
which tend to transform images into continuous outputs, not
binary codes. In addition, the research on hashing images
into binary codes has been going on for decades [49], [50]
but the processing models for hashing images are not hashed
themselves but represented with full precision. This renders
a seemingly contradictory situation that hashed models is not
used for hashing data, and on the contrary, hash codes are
generated by complicated models that are not hashed. To close
this gap, we propose to hash nets for hashing data. We refer
to the strategy as hashing nets for hashing. Hashing nets are
realized by the quantized deep nets presented in Section III-B.
Hashing data are generated by the quantized deep network
as well as the network output characterization presented in
Section III-C. To the best of our knowledge, we are among
the first to develop the strategy of hashing nets for hashing.
Experimental evaluations in Section IV will validate the effec-
tiveness and efficiency of our proposed framework.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments on two
public remote sensing image data sets to evaluate the effi-
ciency and effectiveness of the proposed QDLH framework
for remote sensing image retrieval. Section IV-A introduces
the experimental environment, parameter settings, information
of the data sets and neural network structure used in the
experiments. Sections IV-B and IV-C analyze the evaluation
results of the proposed framework.

A. Experimental Settings and Evaluation Metrics

We conduct our experiments on two benchmark remote
sensing image data sets.
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Fig. 6. Sample images from the UCMerced and AID data sets.

The UCMerced data set [51] was produced by the University
of California. These images are manually extracted from the
U.S. national city map produced by the U.S. Geological
Survey. It contains 21 land cover classes, each of which
includes 100 images. Each image has 256×256 pixels and the
pixel resolution is one foot. Similar to DHNNs [35], in order
to augment the UCMerced data set for deep neural network
training, we rotate the original images by 90◦, 180◦, and 270◦,
separately. In this way, the volume of the UCMerced data set
is increased to 8400. In our experiments, 7400 images are used
as the retrieval database and to train our quantized DHN and
the remaining 1000 images are used as query data for testing.

The AID data set [52] is a large-scale remote sensing image
data set produced by Wuhan University in 2017. The data set
was taken from Google Earth images and tagged by experts
in the field of remote sensing image interpretation. The AID
data set contains 10 000 images from 30 different scenes in
total. Each scene has 200–400 images and each image has
256 × 256 pixels. The AID data set contains 10 000 remote
sensing images which are sufficient for training deep nets.
We do not conduct image rotation for the AID data set.
We randomly select 8000 images as training data, and the
remaining 2000 images are used as testing data. We give some
sample images about the above two data sets in Fig. 6.

The proposed QDLH framework is composed of two
parts: the Q-DFENet and the HCLnet. In order to verify
the effectiveness and generality of our QDLH framework,
we evaluate several popular deep CNNs such as AlexNet,
ResNet-18, VGGNet, and GoogLeNet as prototype models
of the QDLH in the experiments. AlexNet was presented by
Krizhevsky et al. [42] in 2012 and won the 2012 ILSVRC
competition. AlexNet uses an eight-layer neural network
which consists of five convolutional layers and three fully

connected layers, including 630 million links, 60 million
parameters, and 650 000 neurons. VGGNet was proposed by
Simonyan and Zisserman [38] in 2014. VGGNet has two
versions: VGG16 and VGG19. The only difference between
them is the network depth. In our experiments, VGG16 is
adopted, which consists of 16 layers (13 convolutional layers
and three fully connected layers). GoogLeNet was proposed
by Szegedy et al. [53] in 2014. Different from VGGNet which
inherited the framework of AlexNet, GoogLeNet has made
an innovative attempt on the network architecture. Although
GoogLeNet has 22 layers, the model size is much smaller than
AlexNet and VGGNet, and its performance is also superior.
ResNet was presented by He et Al. [54] in 2015. It won
first place in several computer competition vision. ResNet is
mainly composed of residual blocks. The residual block is
implemented by a shortcut connection. This operation does
not add extra parameters and calculations to the network
while both the training speed and performance are greatly
increased. The residual network has a variety of structures and
ResNet-18 is employed in our experiments. The ResNet-18
consists of a convolutional layer, a fully connected layer,
and four residual blocks. Each residual block in ResNet-18
contains four convolutional layers, resulting in 18 layers in
total.

The experiments are all run on a platform with Cen-
tos7 and tesla k80 graphic processing units. Our experiments
are implemented based on the Caffe framework.1 The publicly
available pretrained network is as initialization for training.
We fine-tune the Q-DFENet and HCLNet in our QDLH
framework jointly via backpropagation to learn the model and
hash codes for remote sensing images. The parameters for

1http://caffe.berkeleyvision.org/
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network fine-tuning in the experiments are set as follows.
We use minibatch stochastic gradient descent (SGD) with
0.9 momentum and the learning rate annealing strategy imple-
mented in Caffe. The training policy is a “step" with a step
size of 2000. We set the base learning rate to be 0.0001 and set
the maximum number of iterations to be 10 000. The weight
decay parameter is set to be 0.0002.

In scale-tanh optimization stage, the parameter of scale-tanh
is updated by τt+1 = τt (1+G∗iter)P , where iter represents the
number of training iterations. In experiments, we set τ0 = 1,
G = 0.005, and P = 0.5. The optimal step size is set to 200.
We can observe that τ is gradually increased in each step and
finally the scale-tanh function comes very close to the sign
function.

After generating the hash codes for all remote sensing
images, the fast image retrieval is conducted by calculating the
Hamming distance between different codes. In order to evalu-
ate the retrieval performance, mean average precision (MAP)
is used as the evaluation criterion and it is computed as
follows:

MAP = 1

|Q|
|Q|∑
i=1

1

ni

ni∑
k=1

precision (Rik) (20)

where qi ∈ Q is a query image, and Ni is the number of
images relevant to qi in the retrieval database. Suppose that
the relevant images are ordered as {ri , r2, . . . , rNi }, Rik is the
set of ranked retrieval results from the top result until we get
to point rk . We report the MAP score of the top 50 images
in the experimental results. In addition, the precision with
respect to the top K retrieved examples (Precision@K) and
precision-recall curves (PR-curves) are evaluated for the
compared approaches. The t-distribution stochastic neighbor
embedding (t-SNE) [55] is a method for dimensionality reduc-
tion. t-SNE has the ability to maintain the local structure
of the original data. The low-dimensional data processed by
t-SNE reflects the distance distribution of the original data in
high-dimensional space. Therefore, t-SNE reflects the clus-
tering characteristics of the generated hash codes. Typically,
t-SNE transfers raw data into 2-D representations to produce
an intuitive visualization. The lengths of hash codes are set to
be 32, 64, and 96 separately in our experiments.

B. Comparison With the Full Precision Networks

In this section, we first evaluate the efficiency and effec-
tiveness of the proposed QDLH approach by comparing
it with full precision networks. Four different networks
(AlexNet, VGGNet, GoogLeNet, and ResNet18) are tested in
the experiments. We denote Alex-Q, VGG-Q, GoogLe-Q, and
Res18-Q as the quantized deep hashing methods with our pro-
posed framework. For comparison, we utilize Alex-F, VGG-F,
GoogLe-F, and Res18-F to represent full precision deep hash-
ing methods that replace the Q-DFENet in our framework
with corresponding full precision nets. Tables II and III show
the MAP scores on the two remote sensing data sets with
both full precision and quantized DHNs. The deep hashing
methods with full precision nets outperform the quantized
deep hashing models. It is easy to understand that the full

TABLE II

MAP COMPARISON OF FULL PRECISION DEEP MODELS AND
QUANTIZED DEEP MODELS FOR REMOTE SENSING IMAGE

RETRIEVAL ON UCMERCED DATA SET WITH

DIFFERENT HASH CODE LENGTHS

TABLE III

MAP COMPARISON OF FULL PRECISION DEEP MODELS AND QUANTIZED

DEEP MODELS FOR REMOTE SENSING IMAGE RETRIEVAL ON AID
DATA SET WITH DIFFERENT HASH CODE LENGTHS

precision nets capture more information when extracting deep
features from remote sensing images. On the UCMerced data
set, all of the four quantized deep hashing approaches achieve
very close retrieval accuracy to the full precision nets. On the
AID data set, the performance degradation for GoogLe-Q is
more obvious than the other three quantized nets. However,
the results of GoogLe-Q are still competitive to those of the
other methods. There is no significant degradation of MAP
scores for the different quantized deep hashing models on the
two data sets. We give visual examples to show the retrieved
image results by both the quantized and full precision deep
hashing nets with VGGNet on UCMerced data set in Fig. 7,
from which we can make the same observations as in the
aforementioned analysis.

The main advantages of the quantized DHNs are inference
efficiency and memory economy. Therefore, we conduct an
experiment to measure the time consumed by the full precision
and quantized deep hashing models for image inference.
We first ran the different trained models on the same test-
ing set and obtained the total processing time for all the
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Fig. 7. Visual retrieval results of VGG-F and VGG-Q on UCMerced. The
false results are marked with red rectangles.

testing images. Then, the time consumption needed for one
single image is calculated by averaging the running time on the
size of the testing image set. The average time needed to gen-
erate the hash codes for testing images with different models
is shown in Fig. 8. We observe that the quantized deep hashing
methods are considerably faster than the full precision models
from the obtained comparative results. Moreover, the effi-
ciency improvement is more obvious especially for the deeper
networks with more convolutional operations. For example,
for ResNet-18 with 18 layers, the time required for generating
96-bit hash codes for one image has decreased by more than
40% on the two data sets. Furthermore, the binary weight
parameters save 32× storage space and the 2-bit activated
output features lead to about 16× reduction compared with
original 32-bit float precision values. Therefore, with regard to
the little accuracy loss, the overall performance improvement
of our proposed QDLH framework is quite impressive for
large-scale remote sensing image retrieval. This validates that
the proposed quantized deep hashing framework is suitable to
be deployed in the resource-limited remote sensing devices for
on-orbit processing.

C. Comparison With State-of-the-Art Methods

In this section, we compare our proposed deep remote
sensing image hashing framework with state-of-the-art algo-
rithms. The competing approaches include hashing methods
proposed for remote sensing image retrieval in recent years,
such as partial randomness hashing (PRH) [19], kernel-based
unsupervised hashing (KULSH) [17], kernel-based supervised

Fig. 8. Time(s) consumption of generating hash codes for the testing images
of AID data set with different models. F: full precision networks. Q: quantized
networks. We use the average time of an image to estimate time consumption.
(a) UCMerced. (b) AID.

hashing (KSLSH) [17], and DHNNs [35]. Moreover, we com-
pare it against some representative hashing methods used
in the computer vision field in the experiments, such as
LSH [9], supervised discrete hashing (SDH) [56], column
sampling-based discrete supervised hashing (COSDISH) [57],
DHN [49], deep supervised hashing (DSH) [50], and deep
pairwise-supervised hashing (DPSH) [58]. Among the various
comparison methods, LSH, KULSH, and PRH are unsuper-
vised hashing approaches that do not use label information
for hash code generation, and the rest are supervised methods.
Moreover, LSH, KULSH, PRH, KSLSH, SDH, and COSDISH
are shallow methods and the remaining ones are deep hashing
methods based on CNNs. For a fair comparison, we use the
fc-7 features of a pretrained AlexNet as inputs for the shallow
methods and the raw remote sensing images as inputs for the
deep models.

The MAP scores of different hashing methods for remote
sensing image retrieval on the two data sets are shown
in Table IV. The results of the compared methods are produced
by the public codes downloaded from the authors’ website
except DHNNs because we do not find its public source.
The MAP results for DHNNs on the UCMerced data set are
referenced from the article [35] with the same experimental
settings but the results on the AID data set are not reported
in the original article. We show the results of our proposed
approach based on two deep nets: AlexNet and ResNet-18.
Similarly, Alex-F and Res18-F represent the full precision
models and Alex-Q and Res18-Q denote the quantized deep
hashing methods. We observe in Table IV that PRH and
DHNNs achieve the best performance among the traditional
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TABLE IV

MAP OF PROPOSED HASHING MODELS AND EXISTING HASHING METHODS

Fig. 9. Precision curves with respect to different number of retrieved images under (a) 32-bits, (b) 64-bits and (c) 96-bits, and precision-recall curves under
(d) 32-bits, (e) 64-bits and (f) 96-bits, for different hashing approaches on the UC Merced data set.

unsupervised and supervised remote sensing image hashing
methods, respectively. In general, the deep hashing methods
outperform the shallow approaches. However, by employing
the extracted deep features as inputs, the supervised shallow
methods even achieve better results than some deep hashing
approaches. Among all the compared methods, our proposed
deep hashing approach obtains the highest MAP scores on
the two data sets. By comparing our method Alex-F with
the deep hashing methods such as DHN, DPSH, and DHNNs
which use Alexnet for deep feature extraction, we can see that
further improvements are achieved on the two data sets. This
validates the effectiveness of our HCLNets because we employ

a weighted pairwise loss function for hash code learning and
the comparison methods treat each image pair equally in the
learning procedure. More interestingly, the traditional deep
hashing methods seem not to work well on the AID remote
sensing data sets. The reason may be the data-imbalance
problem arising in the data set. The number of images in
the AID data set varies greatly between different classes,
and the traditional deep hashing methods may not generate
accurate hash codes by neglecting the data-imbalance problem.
However, our proposed deep hashing framework achieves
consistent performance on different data sets by introduc-
ing a class-intensive pairwise weight for different remote

Authorized licensed use limited to: Antonio Plaza. Downloaded on October 04,2020 at 09:38:51 UTC from IEEE Xplore.  Restrictions apply. 



7342 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 10, OCTOBER 2020

Fig. 10. Precision curves with respect to different number of retrieved images under (a) 32-bits, (b) 64-bits and (c) 96-bits, and precision-recall curves under
(d) 32-bits, (e) 64-bits and (f) 96-bits, for different hashing approaches on the AID data set.

Fig. 11. t-SNE of hash codes generated by comparison methods and proposed QDLH on AID data set (32 bit).

sensing images. By comparing our proposed quantized deep
hashing methods Alex-Q and Res18-Q with other traditional
approaches, we can see that the proposed QDLH method con-
sistently outperforms the others. More importantly, as shown
in Fig. 8, the quantized deep hashing nets operate much faster
than traditional deep hashing methods with full precision nets
for remote sensing image processing.

To further illustrate the superiority of our proposed QDLH
framework for remote sensing image retrieval, we illus-
trate the curves of precision and recall for different meth-
ods. Figs. 9 and 10 show the precision curves with different
retrieved examples and overall PR curves on the two data sets,
respectively. We report the curves of our QDLH method based
on quantized AlexNet (Alex-Q) for comparison.

According to Figs. 9 and 10, by changing the number
of retrieved images, the precision of our QDLH method
consistently outperforms the alternatives. Compared with the
other hashing methods, although our QDLH approach employs
quantized deep nets instead of full-precision nets for image
feature extraction, our retrieval accuracy is higher than 90% in
most cases. Our method is superior to the compared methods
in terms of both the retrieval precision and recall rate. This
further validates the effectiveness of our hash code learning
scheme with a weighted class-intensive objective function for
remote sensing images. The PR curves reflect the overall
image retrieval performance of the compared methods. The
area under the PR curve is large when good performance is
achieved. In addition, we visualize the t-SNE distance between
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the generated hash codes of comparison methods and our
proposed QDLH (Res18-Q) on AID data set in Fig. 11. The
t-SNE results reflect the clustering distributions of hash codes
and the different color dots represent hash codes from different
classes. According to Fig. 11, the t-SNE results of hash codes
generated by our proposed model QDLH show better intraclass
cohesion than that from the other methods, which further
validates that the class-intensive loss function in our proposed
method is effective for gathering similar hash codes. The
detailed results in Figs. 9–11 are consistent with the trends
in the above experiments. This also shows the superiority of
our QDLH method. In a nutshell, our QDLH approach is both
an efficient and effective deep hashing framework for remote
sensing image retrieval. It further shows significant potential
for resource-limited remote sensing applications.

V. CONCLUSION

In this article, we have presented a novel quantized deep
hashing model for remote sensing image retrieval. The pro-
posed quantized hashing model is composed of two mod-
ules: the Q-DFENet and the HCLNet. The Q-DFENet is
designed for high-level semantic feature representation of
remote sensing images. However, different from existing deep
hashing methods using full-precision DFENets, our Q-DFENet
contains several quantized convolutional layers with binary
filter weights and 2-bit activations. The Q-DFENet is quite
efficient for inference and leads to significant memory and
computation savings compared with the full-precision nets.
The HCLNet converts the extracted high-level semantic fea-
tures to binary hashing codes for fast remote sensing image
retrieval. In our HCLNet, a class-intensive pairwise entropy
loss and a scale-tanh activation function are used to handle
the data-imbalance problem and generate more accurate hash
codes. We have conducted extensive experiments on two pub-
lic remote sensing image sets UCMerced and AID to evaluate
the performance of our proposed framework. The experimental
results have shown that our QDLH approach obtains signifi-
cant memory and computation efficiency with small precision
degradation compared with those used full-precision deep nets
for hash code learning. In addition, compared with state-of-
the-art methods, our proposed quantized deep hashing method
has achieved promising retrieval performance for remote
sensing images, which has further validated the superiority
of our proposed approach. Therefore, our quantized deep
hashing model is both efficient and effective for large-scale
remote sensing image retrieval. It provides a possible technical
solution for practical applications on resource-limited remote
sensing devices. In future developments, we plan to deploy the
proposed quantized deep hashing framework on mobile remote
sensing devices (such as UAVs) to validate its performance in
real applications.
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