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Abstract— Classification is an important technique for
remotely sensed hyperspectral image (HSI) exploitation. Often,
the presence of wrong (noisy) labels presents a drawback for
accurate supervised classification. In this article, we introduce
a new framework for noisy label detection that combines a
superpixel-to-pixel weighting distance (SPWD) and density peak
clustering. The proposed method is able to accurately detect and
remove noisy labels in the training set before HSI classification.
It considers two weak assumptions when exploiting the spectral–
spatial information contained in the HSI: 1) all the pixels in
a superpixel belong to the same class and 2) close pixels in
spectral space have the same label. The proposed method consists
of the following steps. First, a superpixel segmentation step is
used to obtain self-adaptive spatial information for each training
sample. Then, a metric is utilized to measure the spectral distance
information between each superpixel and pixel. Meanwhile,
in order to overcome the first weak assumption, we use K
nearest neighbors to obtain the closest neighborhoods of pixels
around each superpixel, and a Gaussian weight is employed to
mitigate the second weak assumption by adapting the original
distance information. Next, the noisy labels in the original
training set are removed by a density threshold-based decision
function. Finally, the support vector machine (SVM) classifier
is employed to evaluate the effectiveness of the proposed SPWD
detection method in terms of classification accuracy. Experiments
performed on several real HSI data sets demonstrate that the
method can effectively improve the performance of classifiers
trained with noisy training sets in terms of classification accuracy.

Index Terms— Density peak (DP) clustering, Gaussian weight-
ing, hyperspectral images (HSI), noisy labels, superpixel segmen-
tation, support vector machines (SVMs).
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I. INTRODUCTION

THE recent development of space remote sensing technol-
ogy provides a wealth of usable remote sensing data for

researchers. Hyperspectral images (HSIs) comprise rich spec-
tral and spatial information, which allows for their exploitation
in many domains, e.g., environmental monitoring [1], [2],
precision agriculture [3]–[5], and military applications [6], [7],
among others.

In many applications of HSIs, supervised classification
methods such as support vector machines (SVMs) [8], sparse
representation (SR) [9]–[11], random forests [12], [13], kernel-
based methods [14]–[16], and deep learning [17], [18] play
an important role. However, when limited labeled data are
available, many of these classification methods are unable
to achieve satisfactory classification accuracies. The reason
is that, although the rich spectral and spatial information
contained in HSIs provides the possibility to detect and
classify various objects with better accuracy, the lack of
sufficient labeled data in real applications leads to difficulties
in the classification task. Besides, the acquisition of labeled
data to be used for training by supervised methods tends to
suffer from “noisy label” disturbances, due to problems in
the acquisition device and manual labeling errors. In general
terms, the noisy label phenomenon is inevitable, since it is
caused by the following three main reasons: 1) the captured
scenes are so complex that ground tasks are extremely difficult,
leading to the misclassification of some land covers; 2) large
regular areas often contain many complex spatial structures,
resulting in some wrongly labeled anomalous regions; and
3) the spatial resolution of the scene depends on technology
of the hyperspectral sensor, which may cause the pixel of
an HSI to be inevitably mixed (i.e., composed by different
land covers). Therefore, designing a method for the detection
of noisy labels prior to supervised classification is a highly
desirable objective.

In recent years, the problem of “noisy” labels in supervised
classification has become quite important in the computer
vision domain (in general) and also in remote sensing image
processing (specifically). For instance, Xiao et al. [19] intro-
duced a probabilistic graphical framework to train convolu-
tional neural networks (CNNs) with only a limited number
of clean labels and millions of noisy labels. Lu et al. [20]
formulated a novel L1 optimization-based sparse learning
model to directly (and explicitly) detect noisy labels for
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semantic segmentation. Yao et al. [21] presented a generative
model (called latent stability analysis) to extract stable patterns
from images with noisy labels. Mnih and Hinton [22] proposed
two robust loss functions (obtained by training a deep neural
network) to improve the robustness of deep learning classifiers.
Foody [23] showed that noisy labels can affect the accuracy of
classification obtained by discriminant analysis and SVMs on
airborne thematic mapper data sets. In order to adjust the labels
for noisy (or missing) labeled data sets, Song and Wang [24]
provided a new effective label-refinement algorithm, which is
useful for generating better labels. Hou et al. [25] proposed a
semisupervised probability graphic-based classification frame-
work to address the quantity and quality of the labeled training
pixels. Although some researchers have tried to address the
problem of noisy labels in related fields, the aforementioned
methods cannot be directly extended to HSI classification
because of the high dimensionality and nonlinear structure of
HSI data.

In order to address the aforementioned issues, Kang et al.
[26] first introduced the reasons for the formation of noisy
labels in the supervised classification of HSI data, and fur-
ther proposed an edge-preserving filtering (EPF) and spectral
detection-based method to correct mislabeled training samples.
Jiang et al. [27] proposed a random label propagation algo-
rithm (RLPA) to cleanse the noisy labels of the training set.
The RLPA method introduces graph theory to classification
problems under noisy labels for the first time and is very
robust to the label noise especially when the noise level is
large. In [28], a new method that fuses the spectral angle
and a local outlier factor (SALOF) was proposed to detect
noisy labels in HSI classification. Tu et al. [29] presented
a density peak (DP) clustering-based noisy label detection
method to remove noisy labels. The experimental results show
that the DP-based detection method can effectively promote
classification accuracy. Moreover, Leng et al. [30] designed
a label noise cleansing method with a sparse graph (SALP)
which relies on the assumption that noise follows a Gaussian
distribution. It was shown that SALP provides an effective
mechanism to identify noisy labels in the training set prior to
HSI classification.

In addition, the spatial density peak (SDP) clustering algo-
rithm has been adopted to remove noisy labels [31]. The key
idea of the SDP is to add neighboring samples to available
(center) labeled samples to measure the anomalous nature
of the center samples. However, although the introduction
of spatial information by means of the SDP can effectively
promote the accuracy of noisy label detection and improve
the performance of HSI classification, there are still several
aspects that need to be optimized. First, the incorporation of
spatial information using fixed neighborhoods may introduce
improper segmentation results in contextual edge information.
Second, the correlation among samples is often determined
by the average nearest neighbor distance, which may lead
to ignoring the (weak) assumption that close pixels in spec-
tral space often have the same label. In order to address
the aforementioned problems, superpixel segmentation tech-
niques and weighted joint nearest neighbor-based methods
are investigated in this article. In previous developments,

Fang et al. [32] used superpixel algorithms to adaptively
extract spatial information in HSI classification. A superpixel
correlation coefficient-based representation was also presented
to improve the performance of HSI classification in [33].
Tu et al. [34] proposed a weighted joint nearest neighbor
and sparse representation method to better characterize the
distribution of samples when computing their distance.

In this article, a new method that combines a superpixel-
to-pixel weighting distance (SPWD) and the DP cluster-
ing method is developed to address the problem of “noisy
labels” in HSI classification. Our newly developed method is
specifically designed to cleanse noisy labels in the training
set and further improve the classification performance. Our
method includes the following main steps. First, an entropy
rate superpixel algorithm is introduced to obtain self-adaptive
spatial contextual information around each training sample.
Then, the spectral angle mapper (SAM) is employed as a
distance measure between superpixels and pixels in the scene.
Meanwhile, a K NN-based Gaussian weight is utilized to fully
integrate the spectral–spatial information contained in the HSI.
Next, noisy labels are removed from the original training
set by a density threshold-based decision function. Finally,
the SVM classifier is adopted to evaluate the effectiveness of
the proposed SPWD method. Specifically, the main innovative
contributions of the proposed approach can be summarized as
follows.

1) The traditional (spatial) DP clustering algorithm is
improved in this work by introducing (self-adaptive)
superpixels which further consider the spatial informa-
tion around each training sample. Moreover, we use a
K NN-based Gaussian weighted distance (instead of the
traditional average distance) as a more effective way to
characterize the distance among different samples.

2) We introduce, for the first time in the literature, a method
combining the superpixel-to-pixel weighting distance
and DP clustering for noisy label detection. It is found
that the self-adaptive spatial contextual information
brought by superpixels is more effective than spatial
neighborhoods with fixed shape when defining the local
density of the training samples.

Our experimental evaluation, conducted using several HSI
data sets, demonstrates that our newly developed method
for noisy label detection can effectively improve the perfor-
mance of classifiers trained with noisy training sets. In fact,
the method can improve the classification performance of
different supervised (spectral and spectral–spatial) HSI clas-
sifiers. Moreover, it is computationally efficient and prone to
be exploited in real applications.

The rest of this article is organized as follows. In Section II,
we briefly review the concepts of superpixel segmentation,
Gaussian weighting, and DP clustering. Our newly devel-
oped method for detection noisy labels is described in detail
in Section III. In Section IV, we present the experimen-
tal results (including a detailed comparison between several
state-of-the-art detection methods). Finally, Section V con-
cludes this article with some remarks and hints at plausible
future research lines.
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II. RELATED WORK

In this section, we briefly review the superpixel segmen-
tation method, the Gaussian weighting method, and the DP
clustering method.

A. Superpixel Segmentation

Superpixel segmentation algorithms such as simple linear
iterative clustering (SLIC) [35] and entropy rate superpixel
(ERS) [36] have been widely used in HSI processing to
exploit spatial contextual information around pixels. Let us
assume that Sn refers to a predefined superpixel block. The
graph-based ERS algorithm first maps the image to a graph
G = (V , E), where V is a set of vectors (representing pixels)
and E is a set of edges (denoting pairwise similarities between
adjacent pixels). Then, a subset of edges A is selected to
segment the graph into Sn-related local regions. H (·) (the
entropy rate term of the random walk) and B(·) (a balancing
term that reduces small superpixels) are incorporated into the
objective function to form balanced superpixels as follows:

max
A

{H (A) + λB(A)} s.t. A ⊆ E (1)

where λ ≥ 0 is a weight that controls the contribution of the
entropy rate term and the balancing term. The problem in (1)
can be solved efficiently by a greedy algorithm, as mentioned
in [37] and [38]. Finally, given a common label for each
superpixel (obtained by measuring the distance between each
superpixel and each training class), the base image U can be
described as follows:

U =
Sn⋃

si=0

Msi and Msi ∩ Ms j = ∅, (si �= s j ) (2)

where Msi and Ms j denote any two different superpixels in
the base image U .

B. Gaussian Weighting

Gaussian weighting has been proven to be effective to
characterize the spatial correlation among feature vectors [39].
The Gaussian weighting function has been used in HSI classi-
fication to increase the reliability of distance metrics [34]. Let
us assume that we have a vector Di stc containing the distance
information from a sample of the cth class in the data with
regard to other adjacent samples. In this case, the weighted
coefficient vector ω is defined as follows:

ωc = e
− Di stc2

2σ̂2 (3)

where σ̂ is the half-peak width that controls the attenua-
tion parameters of the Gaussian weighted function. Gaussian
weights are nonnegative and decrease with distance. In addi-
tion, if we consider the redundancy of distance information,
the weighted K nearest neighbor (K NN) distance can be used
as an effective way to balance the proximity of spatial samples
as follows [34]:

Distc
weight =

∑
Distc(K )ωc∑

ωc
(4)

where Distc(K ) represents the distance information for the
K nearest neighbor samples of the cth class. In this way,
it is obvious that the introduction of a weighted distance can
effectively allocate a suitable weight to each sample, thus
overcoming the imbalance problem in the original distance
information.

C. DP Clustering

The DP clustering algorithm is based on the assumption that
the cluster center is surrounded by low-density data points, and
is far away from another high-density data point. As a result,
each sample is analyzed in terms of its local density ρ and its
distance δ to other data points with higher local density. The
DP clustering algorithm [40] can be summarized as follows:

di j = ‖ri − r j‖2
2 (5)

where ri and r j are the points that belong to a set C = {rτ }n
τ=1,

n represents the number of points, and di j is the Euclidean
distance between points ri and r j . With the aforementioned
definitions in mind, the kernel-based local density ρi of data
point ri can be calculated through one of the following two
methods:

ρi =

⎧⎪⎪⎨
⎪⎪⎩

∑
j

χ(di j − dc), Cut-off kernel

∑
j

e
−

( di j
dc

)2

, Gaussian kernel
(6)

where dc is the cut-off distance (which refers to the radius of
the search region). The Gaussian kernel has the advantage of
decreasing the negative impact of the statistical errors caused
by the limited availability points. As a result, the Gaussian
kernel-based local density has demonstrated to be successful in
HSI data interpretation [41]–[43]. The local density ρi reflects
the number of data points that are closer than dc to the data
point ri .

Once ρi is obtained, another value δi is obtained as follows:

δi =
⎧⎨
⎩

max
j

(di j ), if ρi = max(ρ)

min
j :ρ j >ρi

(di j ), Otherwise.
(7)

In particular, if the point ri has the highest local density, then
δi is set to the maximum distance from the point ri to any
other point. Otherwise, δi is defined as the minimum distance
from the point ri to any other point with higher local density.
Finally, a score γi used to find out cluster centers as follows:

γi = ρi × δi (8)

where γi considers jointly ρi and δi (the larger the score
of γi , the more likely that the associated point ri is a cluster
center). Therefore, a hint for choosing the number of centers
is provided by the solution of γi , ordered in decreasing
order [40].

III. PROPOSED METHOD

Different from a fixed-shape spatial neighborhood, super-
pixels adaptively obtain spatially homogeneous regions that
preserve the edge information of spatial structures. However,
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Fig. 1. Overview of the proposed SPWD method for noisy label detection prior to HSI classification. mc
t represents the neighboring pixels of the tth training

sample of the cth class.

it is difficult to guarantee that all pixels belonging to the
same superpixel block share identical class information and
that close pixels in spectral space have the same label.
To address these issues, we develop a new noisy label detec-
tion method that combines an innovative superpixel-to-pixel
weighting distance (SPWD) and the DP clustering algorithm,
as illustrated in Fig. 1 and Algorithm 1. Our newly developed
method consists of the following three parts: 1) construction
of self-adaptive regions; 2) adjustment of spectral–spatial
information; and 3) detection of noisy labels. In the following,
we describe each of these parts in detail.

A. Construction of Self-Adaptive Regions

In our method, the spectral features (i.e., pixel values) are
exploited to measure the difference among training samples.
In fact, we use PCA to reduce the dimensionality of the
input data only before applying superpixel segmentation, but
then work with the full spectral information. We emphasize
that our method is fully compatible with the processing of
transformed spectral features (not only PCA but also other
transformations). Our main reason to focus on the original
spectral information is to illustrate the advantages of our newly
proposed method in the most simple case. In order to obtain
the superpixel segmentation on I , we proceed as follows:

Pe = PCA(I) (9)

where Pe are the three first principal components retained
to capture a significant amount of the spectral and spatial
information of the original image I .

Algorithm 1 SPWD
Inputs: 1) HSI; 2). Noisy training

set; 3). Number of principal components.
Output: Improved training set T and classification results

obtained by the SVM trained with T .

1: Obtain Pe from the original HSI using the PCA algorithm.
2: Construct a self-adaptive region for each sample by using

the ERS algorithm to the Pe.
3: for training sample xc

t do
4: Select a set of neighboring pixels from a superpixel

block of xc
t , where the size can be adjusted by the

parameter Sn .
5: Obtain the distance information Dc

S(u, v) for each class
between the samples in the class and all the
pixels in each superpixel.

6: Calculate the weighted coefficients Wc
S(u, v)

based on the aforementioned distance information.
7: Redefine the distance information among

training samples by applying K NN Gaussian
weighting distance Dc

SK,W(u, v).
8: Use the weighted distance information to calculate the

local density information by means of the
DP algorithm.

9: Cleanse the original training set by using the decision
function, and build an improved training set T.

10: end for
11: Perform classification using the SVM trained with the

improved training set T.
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Fig. 2. Outline of the superpixel generation process for HSIs.

Then, the ERS is utilized on the Pe components to obtain
Sn nonoverlapping 2-D superpixel regions. This is done as
follows:

Is = ERSSn(Pe) (10)

where Is refers to the segmentation details corresponding
to Sn blocks. Meanwhile, the original image I (with the
full spectral content) is divided into blocks based on the
aforementioned superpixel segmentation details (obtained in
the reduced space given by Pe). As a result, hereafter, we work
with the full spectral dimensionality of the data. The outline
of the superpixel generation process is given in Fig. 2.

B. Adjustment of Spectral–Spatial Information

Let us assume that the original training set is given by
X = {Xc, Qc}l

c=1 ∈ (Rm×n × Q)c, where Xc = {xc
t }(t =

1, 2, . . . , n), Qc refers to the cth class label, l is the number
of classes, n is the number of training samples in the cth
class, and m is the number of samples in the training set.
First, we compute the distance between the training samples
in each class using the spectral angle mapper as follows:

Dc(u, v) = arccos

( 〈
xc

u, xc
v
〉∥∥xc

u

∥∥∥∥xc
v

∥∥
)

(11)

where xc
u and xc

v refer to the uth and vth classes; note that
u, v ∈ (1, 2, . . . , n), training sample of cth class, respectively.
Here, taking into account the advantages of spatial contextual
information, the neighboring pixels from the same superpixel
block of the training samples are introduced in the calculation
to adjust the original distance information, which is repre-
sented as follows:

Dc
S(u, v) = [Dc(u, v1), Dc(u, v2), . . . , Dc(u, vN)] (12)

where Dc(u, vξ ) denotes the distance information from xc
u to

the ξ th neighborhood of xc
v for the training samples of the cth

class, and N refers to the number of training samples of the
superpixel block where the xc

v is located.
Then, to reduce the redundancy of spatial information from

a superpixel and improve the balance of the spectral feature-
based distance information among pixels that belong to the
same block, a Gaussian weighting is applied to the distance
calculation as follows:

Wc
S(u, v) = e

− Dc
S(u,v)2

2Ct 2 (13)

where Ct refers to the half-peak width that controls the
attenuation of weighting. Therefore, the distance between xc

u

and xc
v is defined by

Dc
SK,W(u, v) =

∑K
b=1 Wc

SK
(u, vb) · Dc

SK
(u, vb)∑K

b=1 Wc
SK

(u, vb)
(14)

where Dc
SK

(u, vb) represents the bth distance information
when selecting K minimum distances from the Dc

S(u, v).
WSK(u, vb) refers to the weight corresponding to Dc

SK
(u, vb).

A general flowchart of the K NN-based Gaussian weighting
distance is illustrated in Fig. 3.

C. Detection of Noisy Labels

Once the superpixel-to-pixel distance is obtained, the cutoff
distance can be obtained as follows:

Dc
SK,W−CD(u, v) = Ec(θ) s.t. θ =

〈
n · (n − 1)

100
· p

〉
(15)

where Ec is a matrix that sorts the non-zero elements in the
upper triangular matrix of Dc

SK,W(u, v) from the smallest to
the largest, parameter p adjusts the size of the cutoff distance,
and < · > refers to the round operation.

After obtaining the cutoff distance, the Gaussian kernel-
based local density ρc = {ρc

1, . . . , ρc
u , . . . , ρc

n} can be cal-
culated for each training sample in the cth class of a noisy
training set as follows:

ρc =
∑

exp

⎧⎨
⎩−

(
Dc

SK,W(u, v)

Dc
SK,W−CD(u, v)

)2
⎫⎬
⎭. (16)

With the aforementioned local density, the noisy labels of
each class can be effectively detected and removed by

Tc =
{

xc
t , if ρc

t ≥ λ · ρ̄c

∅, Otherwise
(17)

where T = {Tc, Qc}l
c=1 refers to the improved training set in

which noisy labels have been detected and removed, and λ is
a free parameter controlling the decision threshold.

IV. EXPERIMENTAL RESULTS

A. Data Sets Description

To verify the effectiveness of the proposed SPWD method,
experiments have been conducted on four HSI data sets,
described as follows.

1) University of Pavia: This image was obtained over the
campus of the University of Pavia, Italy, by the Reflec-
tive Optics System Imaging Spectrometer (ROSIS-3).
The image is of size 610 × 340 pixels with a spatial
resolution of 1.3 m per pixel (mpp) and 115 spectral
bands. After removing 12 noisy bands, experiments
were conducted on the remaining 103 bands. Fig. 4(a)–
(c), respectively, shows the false-color composite of the
University of Pavia image, the corresponding labeled
data, and the class labels.

2) Kennedy Space Center: This image was collected by
the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) over the Kennedy Space Center, Florida. The
image has 512 × 614 pixels and 224 spectral bands.
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Fig. 3. Illustration of the K NN-based Gaussian weighting process in the SPWD algorithm.

Fig. 4. University of Pavia data set. (a) Three-band color composite.
(b) Labeled data. (c) Class names.

Forty-eight bands have been removed due to water
absorption and low signal to noise ratio. The false-
color composite of the Kennedy Space Center image,
the corresponding labeled data, and the class labels are,
respectively, shown in Fig. 5(a)–(c).

3) Salinas Valley: This image was acquired by the AVIRIS
over Salinas Valley in California. The image contains
224 bands and 512 × 217 pixels, with a spatial reso-
lution of 3.7 mpp. Twenty water absorption bands are
removed. Fig. 6(a)–(c), respectively, shows a false-color
composite of the Salinas Valley image, the correspond-
ing labeled data, and the class labels.

4) Washington DC: This image was collected by the hyper-
spectral digital image collection experiment (HYDICE)
sensor over the Washington DC Mall. The sensor
measures 210 bands (in our experiments, we removed
19 bands in the spectral range 0.9–1.4 × 10 μm). The
data set contains 280 scan lines and 307 pixels in each
scan line. A false-color composite and the corresponding
labeled data and labels (containing six ground reference
classes) are, respectively, shown in Fig. 7(a)–(c).

The SVM is one of the most widely used pixel-wise
classifiers and has been adopted in this work as a baseline to
evaluate the performance of the proposed SPWD method. The
SVM is implemented with the LIBSVM library [44] by using
the radial basis function kernel. Moreover, the parameters
of the SVM are determined using five-fold cross-validation.
To make the comparison fair, the represented quality indexes

Fig. 5. Kennedy Space Center data set. (a) Three-band color composite.
(b) Labeled data. (c) Class names.

Fig. 6. Salinas Valley data set. (a) Three-band color composite. (b) Labeled
data. (c) Class names.

of overall accuracy (OA), average accuracy (AA), Kappa coef-
ficient (κ), and class individual accuracies are calculated by
averaging the results obtained after ten repeated Monte Carlo
experiments with different randomly selected training samples
and noisy labels, and the mean and the standard deviation
after such experiments are provided in our experiments. Note
that OA and AA indicators are used in percentage formation
to present experimental results in this article. The training
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Fig. 7. Washington DC data set. (a) Three-band color composite. (b) Labeled
data. (c) Class names.

sets are constructed using the labeled samples available in the
ground truth. For each class, some pixels (randomly selected
from other classes) are added to simulate the problem of
“noisy label.”

B. Parameter Settings

In this section, the influence of the parameters relevant to
the performance of the proposed method is analyzed, such as
the number of superpixel blocks Sn , the half-peak Ct of the
Gaussian weight function, the threshold parameter λ of deci-
sion function, and the nearest neighbor K . The experiments are
respectively performed on four real data sets, i.e., University of
Pavia, Kennedy Space Center, Salinas Valley, and Washington
DC data sets. For the University of Pavia data set, the training
set consists of 52 true training samples and 8 noisy labels for
each class. For the KSC, Salinas, and Washington DC data
sets, the training set consists of 24 true training samples and
4 noisy labels for each class, respectively.

In the first experiment, the impact of the superpixel blocks
Sn and the half-peak width Ct on the performance of the
proposed method is tested in the classification of the above-
mentioned hyperspectral data sets. The ranges of Sn and Ct

are set to 4.5×103 to 9.5×103 and 5.0×10−2 to 1.5×10−1,
respectively. As shown in Fig. 8, it can be observed that the
OAs of the classification results achieved by the proposed
method exhibit a close relationship with the variation of the
parameter value. For instance, if we fix Sn and observe Ct ,
it can be found from Fig. 8(a)–(c) that the OAs will decrease
as the value of Ct increases, due to the fact that Ct controls
the extreme value of the Gaussian weighting function, leading
to a different degree of distance weight between different
samples. Similarly, when Ct is fixed, it can be observed
that the change of superpixel parameter Sn exhibits different
degrees of influence on the OAs, which indicates that Sn

controls the amount of spatial information that is effective
for noisy label detection. Furthermore, an optimal parameter
value can be determined based on the topmost classification
accuracy of SVM, using the improved training set. It can
be seen from Fig. 8 that the highest OA of SVM using the
improved training set on the University of Pavia, Kennedy
Space Center, Salinas Valley, and Washington DC data sets

is 83.72% (Ct = 0.08, Sn = 5000), 87.36% (Ct = 0.11,
Sn = 9000), 82.56% (Ct = 0.13, Sn = 5500), and 85.16%
(Ct = 0.09, Sn = 5500), respectively. Therefore, these values
of Ct and Sn are set to default parameters corresponding to
different data sets in this article.

In the second experiment, the effectiveness of the threshold
parameter λ and the nearest neighbor K on the performance
of the proposed method is evaluated in the classification
of the aforementioned hyperspectral data sets. The threshold
parameter is chosen from λ = 1.0 × 10−2 to λ = 11.0 × 10−2

to solve (17) and the nearest neighbor K is selected from
K = 2 to K = 22 to solve (14). As shown in Fig. 9, it can be
observed that the value of OA rises first and then falls as the λ
changes in the interval of λ = 1.0 × 10−2 to λ = 11.0 × 10−2

when the K is fixed. The reason is that the size of the λ
controls the number of samples to be removed for each class.
Moreover, when the parameter λ is fixed, it can be seen from
Fig. 8 that the value of OA shows an increasing (and then
decreasing) trend with an increase of K . The reason is that a
small neighborhood may lack sufficient spatial information,
and a large neighborhood may lead to the introduction of
spatial information with dissimilar pixels. Therefore, according
to the highest OA obtained by the SVM on various data
sets, the default parameters of the proposed method on the
University of Pavia, Kennedy Space Center, Salinas Valley,
and Washington DC data sets are set to (λ = 0.11, K = 12),
(λ = 0.1, K = 6), (λ = 0.1, K = 4), and (λ = 0.1, K = 10),
respectively.

C. Component Analysis

In this section, we conduct experiments with the Kennedy
Space Center data set (with 24 true samples and 4 noisy
labels per class) and with the University of Pavia data set
(with 52 true samples and 8 noisy labels per class). The first
experiment is implemented to analyze the effectiveness of the
proposed method with different kinds of superpixel algorithms,
i.e., SLIC [35] and ERS [36]. As shown in Tables I and II,
under the same experimental conditions, it can be observed
that the ERS algorithm leads to better performance in terms
of classification accuracy and time consumption with respect
to the SLIC algorithm. In addition, schematic segmentation
results obtained by the ERS and SLIC algorithm on the above
KSC and University of Pavia scenes are shown in Figs. 10
and 11, respectively. Focusing on Fig. 10, the superpixel
blocks achieved by the ERS algorithm are more shape-
adaptive than those obtained by the SLIC algorithm. Therefore,
the ERS-based superpixel segmentation approach is employed
for building the proposed method and used in the following
experiments.

The second experiment is conducted on the Kennedy Space
Center data set with a training set that is made up of 24 true
samples and 4 noisy labels for each class. In this experiment,
the performance of the proposed method (using different
distance metrics, such as Euclidean [45], spectral information
divergence (SID) [38], correlation coefficient (CC) [46], and
SAM [47], is represented in Table III. It can be seen that the
proposed method achieves the highest classification accuracies
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Fig. 8. Influence of parameters Sn and Ct on the performance of the proposed SPWD method. (a) University of Pavia data set (with 52 true and 8 noisy
labels per class). (b) Kennedy Space Center data set (with 24 true and 4 noisy labels per class). (c) Salinas Valley data set (with 24 true and 4 noisy labels
per class). (d) Washington DC data set (with 24 true and 4 noisy labels per class).

Fig. 9. Influence of parameters K and λ on the performance of the proposed SPWD method. (a) University of Pavia data set (with 52 true and 8 noisy
labels per class). (b) Kennedy Space Center data set (with 24 true and 4 noisy labels per class). (c) Salinas Valley data set (with 24 true and 4 noisy labels
per class). (d) Washington DC data set (with 24 true and 4 noisy labels per class).

TABLE I

CLASSIFICATION PERFORMANCE OBTAINED BY THE SPWD METHOD
USING DIFFERENT SUPERPIXEL SEGMENTATION ALGORITHMS

FOR THE UNIVERSITY OF PAVIA DATA SET (WITH 52 TRUE

SAMPLES AND 8 NOISY LABELS PER CLASS). THE NUMBER

IN THE PARENTHESIS REPRESENTS THE STANDARD
VARIATION OF THE ACCURACIES OBTAINED

IN REPEATED EXPERIMENTS

TABLE II

CLASSIFICATION PERFORMANCE OBTAINED BY THE SPWD METHOD

USING DIFFERENT SUPERPIXEL SEGMENTATION ALGORITHMS FOR
THE KENNEDY SPACE CENTER DATA SET (WITH 24 TRUE

SAMPLES AND 4 NOISY LABELS PER CLASS). THE NUMBER

IN THE PARENTHESIS REPRESENTS THE STANDARD

VARIATION OF THE ACCURACIES OBTAINED
IN REPEATED EXPERIMENTS

using the SAM. Therefore, in this article, the SAM metric is
utilized.

D. Detection Performance Analysis

To further illustrate that the proposed method can effectively
detect and remove noisy labels in the training set, an exper-
imental analysis of detection performance is conducted for

Fig. 10. Segmentation map (400 blocks) obtained by different superpixel
segmentation methods for the University of Pavia data set. (a) SLIC method.
(b) ERS method.

Fig. 11. Segmentation map (400 blocks) obtained by different superpixel
segmentation methods for the Kennedy Space Center data set. (a) SLIC
method. (b) ERS method.

different data sets. For the University of Pavia scene, the initial
training set contains 52 true samples and a different number
of noisy labels for each class. For the Kennedy Space Center,

Authorized licensed use limited to: Antonio Plaza. Downloaded on May 30,2020 at 17:04:44 UTC from IEEE Xplore.  Restrictions apply. 



4124 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 6, JUNE 2020

TABLE III

CLASSIFICATION PERFORMANCE OBTAINED BY THE SPWD METHOD
USING DIFFERENT METRICS FOR THE KENNEDY SPACE CENTER

DATA SET (WITH 24 TRUE SAMPLES AND 4 NOISY LABELS PER

CLASS). THE NUMBER IN THE PARENTHESIS REPRESENTS THE

STANDARD VARIATION OF THE ACCURACIES OBTAINED IN
REPEATED EXPERIMENTS

TABLE IV

DETECTION PERFORMANCE (NUMBER) OF NOISY LABELS FOR THE
PROPOSED METHOD ON DIFFERENT DATA SETS. Tn × l REFERS TO

THE TOTAL NUMBER OF NOISY LABELS IN THE TRAINING SET.
Tn REPRESENTS THE NUMBER OF NOISY LABELS PER CLASS.

THE NUMBER IN THE PARENTHESIS REPRESENTS THE
STANDARD VARIATION OF THE ACCURACIES

OBTAINED IN REPEATED EXPERIMENTS

Salinas Valley and Washington DC scenes, the initial training
sets contain 24 true samples and various number of noisy
labels for each class, respectively.

The first experiment is conducted to analyze the influence
of the number of iterations on the performance of the proposed
method. The proposed method repeats (12)–(17), and the key
idea of the iterative process is that the previous output is used
as the next input until a stopping criterion is met. As shown
in Table IV, the proposed method obtains a low false detection
rate (see third column), which refers to the fact that a small
number of true samples are wrongly detected, and achieves
pretty good detection performance when the number of noisy
labels in each class of the training set is less than the number
of true samples. However, there are still some noise labels in
the improved training set (see the fourth column), especially
when a multitude of noisy labels are still present in the original
training set. The reason is that a decision threshold-based
removal solution is not satisfactory with an original training
set that contains a large number of noisy labels.

In addition, an iterative detection process (based on the
proposed method) is introduced into the original training set
to further remove the noisy labels. As shown in Fig. 12, it can
be seen that the OA decreases as the number of iterations
increases when the original training set contains a low number
of noisy labels (see red column) on the different data sets.
However, when the training set contains more noisy labels (see
green and blue columns), the OAs rise first and then fall with
the number of iterations. This means that iterative detection

TABLE V

DETECTION PERFORMANCE OF THE SPWD WITH DIFFERENT PARTITION
STRATEGIES FOR GENERATING THE TRAINING AND TEST SETS FOR

THE SALINAS DATA SET (USING 24 TRUE SAMPLES AND 8 NOISY

LABELS FOR EACH CLASS). THE NUMBER IN THE PARENTHESIS

REPRESENTS THE STANDARD VARIANCE OF THE
ACCURACIES OBTAINED IN REPEATED

EXPERIMENTS

can achieve better detection performance in a training set with
a large number of noisy labels. In order to balance the tradeoff
between efficiency and classification accuracy, the number of
iterations of the proposed method is set to one for the four
considered data sets.

The second experiment is performed on the Salinas Val-
ley data set (with 24 true samples and 8 noisy labels for
each class). In this experiment, the detection performance
of the proposed SPWD method has been evaluated using
different partition methods for generating the training and
test sets. As shown in Fig. 13(a) and (b), the training sam-
ples are first selected randomly from the available ground
truth, and then we use the remaining labeled samples for
testing. In Fig. 13(c) and (d), another way of creating the
training and testing set is considered, in which the train-
ing and the test samples are always disjoint, as indicated
in [48]. These disjoint data sets are available from the
GRSS Data and Algorithm Standard Evaluation website: http://
dase.grss-ieee.org.

The experimental results reported in Table V indicate that
the proposed SPWD method exhibits better performance in
terms of classification accuracies than the SVM trained with
the disjoint training set. The reason is that the difference
between true samples and noisy labels is more obvious in the
disjoint sample set. Taking into account the universality of the
proposed SPWD method, the random strategy for generating
the training and test sets is adopted to conduct the subsequent
experiments on the proposed method.

E. Classification Performance Evaluation With the SVM

In this section, the classification performance of different
methods (such as DP, SDP, KSDP, and SPWD) is evaluated
by using an SVM classifier (trained with different improved
training sets) on the University of Pavia, Kennedy Space
Center, Salinas Valley, and Washington DC data sets. For
the University of Pavia data set, the experiments are con-
ducted with 52 true samples and different numbers of noisy
labels in the range of 8–24 per class. For the Kennedy
Space Center, Salinas Valley, and Washington DC data sets,
the experiments are conducted with 24 true samples and
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Fig. 12. Classification accuracy achieved by the SPWD with different numbers of iterations. (a) University of Pavia data set (with 52 true samples and
a different number of noisy labels per class). (b) Kennedy Space Center data set (with 24 true samples and a different number of noisy labels per class).
(c) Salinas Valley data set (with 24 true samples and different numbers of noisy labels per class). (d) Washington DC data set (with 24 true samples and
different numbers of noisy labels per class).

Fig. 13. Illustration of different train/test splits on the Salinas Valley data
set. (a) Train(random). (b) Test(random). (c) Train(disjoint). (d) Test(disjoint).

different numbers of noisy labels in the range of 4–12 for
each class. In Fig. 14, the classification performance of the
SVM (trained using the different training sets) is provided.
It can be observed that the classification results obtained by
the SVM trained with improved training sets are higher than
those obtained using the original training set. Specifically,
the SVM trained using the training set improved by the pro-
posed SPWD method can always achieve better classification
results with respect to the improved training sets provided
by other methods. This indicates that the introduction of
shape-adaptive spatial information and a weighted distance
metric can further improve the detection accuracy of noisy
labels and, subsequently, the classification performance of the
SVM classifier.

In addition, the classification results obtained by the SVM
trained using different training sets on the University of
Pavia data set are given in Table VI. It can be seen from
Table VI that the proposed method can effectively improve the
classification accuracies for most of the classes. For example,
when the training set contains eight noisy labels for each class,
the classification accuracy of the SVM trained using training
set improved by the SPWD increases from 81.95% to 93.06%
for the metal sheets class and from 76.10% to 81.28% for self-
blocking bricks. Meanwhile, OAs can be increased by about
4%. This demonstrates that the noisy labels in the original
training set can be effectively removed by the proposed SWPD
method.

The experimental results on the Kennedy Space Center data
set are shown in Fig. 15 and Table VII, respectively. Focusing
on Fig. 15, we can see that the SVM trained using the with
noisy labels shows several misclassifications in classes such
as spartina marsh, cattail marsh, and salt marsh. Meanwhile,
the classification maps of the SVM trained with the training
set improved by DP, SDP, and KSDP show some improve-
ments, but the most significant improvement is obtained after
applying the proposed SPWD method. As shown in Table VII,
the classification results obtained by the SVM trained with
the proposed SPWD method can reach higher OAs, AAs, and
Kappa than those obtained by the SVM trained with other
methods.

As shown in Table VIII, the classification accuracy of
the SVM trained with the proposed SPWD method can
be increased by 1.84%–5.24% under different training sets
with noisy labels. In addition, the experimental classification
results obtained for the Washington DC data set are shown
in Table IX. Here, the classification performance obtained
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Fig. 14. (a) Performance comparison of the SVM (trained using the original training sets, and trained using the improved training sets obtained by the DP,
SDP, KSDP, and SPWD methods) in terms of OA (first row) and AA (second row). (b) and (f) Experiments on the Kennedy Space Center data set with
different numbers of mislabeled (varying from 2 to 12) and 20 true samples per class. (c) and (g) Experiments on the Salinas Valley data set with a different
number of mislabeled (varying from 2 to 12) and 20 true samples per class. (d) and (h) Experiments on the Washington DC data set with different number
of mislabeled (varying from 2 to 12) and 20 true samples per class.(e) Experiments on the University of Pavia data set with a different number of mislabeled
(varying from 6 to 26) and 50 true samples per class.

TABLE VI

CLASSIFICATION PERFORMANCE OF THE SVM, DP, SDP, KSDP, AND SPWD METHODS FOR THE UNIVERSITY OF PAVIA DATA SET

(WITH 52 TRUE SAMPLES AND DIFFERENT NUMBERS OF NOISY LABELS PER CLASS). THE NUMBER IN THE PARENTHESIS

REPRESENTS THE STANDARD VARIATION OF THE ACCURACIES OBTAINED IN REPEATED EXPERIMENTS

by the SVM trained with the improved training set provided
by the proposed SPWD method can still obtain the highest
accuracies for most of the classes. In particular, when the
grass and shadow classes respectively contain 12 noisy labels,
the classification accuracies achieve the highest OAs (69.11%
and 97.30%, respectively). This suggests that the proposed
SPWD method can effectively remove noisy labels and
improve the classification performance of the SVM.

Finally, the running times (in seconds) for the different
considered methods are reported in Table X. All of the codes

have been implemented on a computer with an Intel�CoreTM

i7-7800X, CPU 3.50 GHz, and 32 GB of RAM, and the
software platform is MATLAB R2014a. As shown in Table X,
the time consumption of the SVM trained using the training set
improved by the proposed SPWD method is lower than that of
the SVM trained using the original noisy training set. This is a
direct consequence of the fact that some noisy labels have been
removed from the original training set. In addition to the time
used for classification, the detection time of the different noisy
label detection methods is given in Table X. It can be seen that
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Fig. 15. Classification results (%) of various methods on the Kennedy Space Center data set. Classification maps obtained by the SVM (first column),
the DP (second column), the SDP (third column), the KSDP (fourth column), and the proposed SPWD method (fifth column) trained with 24 true samples
and different numbers of noisy labels per class. (a)–(e) Four noisy labels per class. (f)–(j) Eight noisy labels per class. (k)–(o) Twelve noisy labels per class.
(a) OA = 83.42. (b) OA = 86.43. (c) OA = 85.02. (d) OA = 87.11. (e) OA = 88.56. (f) OA = 82.11. (g) OA = 85.64. (h) OA = 84.74. (i) OA = 86.25.
(j) OA = 87.21. (k) OA = 80.92. (l) OA = 84.25. (m) OA = 83.02. (n) OA = 85.37. (o) OA = 86.22.

TABLE VII

CLASSIFICATION PERFORMANCE OF THE SVM, DP, SDP, KSDP, AND SPWD METHODS FOR THE KENNEDY SPACE CENTER DATA SET
(WITH 24 TRUE SAMPLES AND DIFFERENT NUMBERS OF NOISY LABELS PER CLASS). THE NUMBER IN THE PARENTHESIS

REPRESENTS THE STANDARD VARIATION OF THE ACCURACIES OBTAINED IN REPEATED EXPERIMENTS

the SPWD needs more time to execute the detection of noisy
labels than the other tested methods, as a result of the inclusion
of spatial information in the detection process. However,

the increase in processing time is compensated by the higher
accuracy obtained by the proposed method. As the proposed
method is easy to parallelize, in future developments we will
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TABLE VIII

CLASSIFICATION PERFORMANCE OF THE SVM, DP, SDP, KSDP, AND SPWD METHODS FOR THE SALINAS VALLEY DATA SET
(WITH 24 TRUE SAMPLES AND DIFFERENT NUMBERS OF NOISY LABELS PER CLASS). THE NUMBER IN THE PARENTHESIS

REPRESENTS THE STANDARD VARIATION OF THE ACCURACIES OBTAINED IN REPEATED EXPERIMENTS

TABLE IX

CLASSIFICATION PERFORMANCE OF THE SVM, DP, SDP, KSDP, AND SPWD METHODS FOR THE WASHINGTON DC DATA SET

WITH 24 TRUE SAMPLES AND DIFFERENT NUMBER OF NOISY LABELS PER CLASS AS TRAINING SET. NUMBER IN THE
PARENTHESIS REPRESENTS THE STANDARD VARIANCE OF THE ACCURACIES OBTAINED IN REPEAT EXPERIMENTS

accelerate its performance by resorting to implementations in
high-performance computing architectures such as graphics
processing units (GPUs).

F. Classification Performance Evaluation With Different
Classifiers

In this section, the proposed SPWD method is incorporated
to other classifiers (in addition to SVM), such as the SR clas-
sifier (SRC) [49], the extreme learning machine (ELM) [50],
the basic thresholding classifier (BTC) [51], and the kernel
BTC (KBTC) [52], to further demonstrate the effectiveness of
the proposed noisy label detection method with other methods.
The experiments are performed on the University of Pavia data
with 52 true samples and 8 noisy labels. Table XI shows the

classification results of the different spectral classifiers that
were trained using the original noisy training set (marked as
NLA) and the training set improved by the DP, SDP, KSDP,
and SPWD methods. It can be observed that the spectral classi-
fiers that use the training set improved by the proposed SPWD
method always achieve better classification performance with
respect to those trained with the original noisy training set
and other improved training sets. For example, the OA value
of the BTC, KBTC, SRC, and ELM classifiers are improved
by nearly 6%–10%.

Moreover, the proposed method also has been performed
with spatial–spatial classification methods. The experiments
are conducted on the University of Pavia data set with 52 true
training samples and 8 noisy labels. Table XI shows the
classification results of different spectral–spatial classification
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TABLE X

COMPARISON OF RUN TIME (SECONDS) BETWEEN DIFFERENT METHODS, WHERE THE VALUE
IN THE PARENTHESIS REPRESENTS THE TIME CONSUMPTION IN THE DETECTION PROCESS

TABLE XI

CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT SPECTRAL CLASSIFIERS AND SPECTRAL–SPATIAL CLASSIFICATION METHODS
USING THE ORIGINAL TRAINING SET (MARKED AS NLA) AND THE IMPROVED TRAINING SET OBTAINED BY DP, SDP, KSDP,

AND SPWD METHODS FOR THE UNIVERSITY OF PAVIA DATA SET (WITH 52 TRUE SAMPLES AND 8 NOISY LABELS

PER CLASS). THE NUMBER IN THE PARENTHESIS REPRESENTS THE STANDARD VARIATION
OF THE ACCURACIES OBTAINED IN REPEATED EXPERIMENTS

methods trained using the original noisy training set and differ-
ent improved training sets. Here, four classical spectral–spatial
classification methods are adopted: the extended morphologi-
cal profiles (EMPs) [53], the logistic regression and multilevel
logistic (LMLL) [54], the image fusion recursive filtering
(IFRF) [55], and the edge-preserving filtering (EPF) [56].
It can be observed from Table XI that the methods trained
with the improved training sets achieve better classification
accuracy when compared with the methods trained the original
(noisy) training set. The performance improvements obtained
by the methods trained with the training set provided by the
proposed SPWD method are more noticeable.

V. CONCLUSION

In this article, a new algorithm for noisy label detection is
presented. The proposed approach combines a new superpixel-
to-pixel weighting distance and the DP clustering algorithm
to detect and remove noisy labels from the training set, thus

improving the performance of spectral and spatial–spectral
HSI classifiers. A key aspect of our approach is that it can
deal with two weak assumptions when exploiting the spectral–
spatial information contained in the HSI: 1) all the pixels in
a superpixel belong to the same class and 2) close pixels in
spectral space have the same label. In order to overcome the
first weak assumption, we use K nearest neighbors to obtain
the closest neighborhoods of pixels around each superpixel,
and a Gaussian weight is employed to mitigate the second
weak assumption by adapting the original distance informa-
tion. Our experimental results, conducted on several real HSI
data sets, demonstrate that the method can effectively improve
the performance of a variety of classifiers trained with noisy
training sets.

In the future, we will do our utmost to prove whether
SPWD can effectively address other related HSI applications.
We will also explore other strategies to obtain the superpixel
segmentation map, including techniques that not only use the
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first few principal components to perform this task. Although
we anticipate that the processing of RGB images by means of
the proposed approach can be successful, there would be addi-
tional work to do in terms of RGB-based model reconstruction
and parameter settings. Moreover, we will investigate new
strategies that are able to correct mislabeled samples instead
of removing them.
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