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Abstract— This paper proposes a novel end-to-end learning
model, called skip-connected covariance (SCCov) network, for
remote sensing scene classification (RSSC). The innovative con-
tribution of this paper is to embed two novel modules into the
traditional convolutional neural network (CNN) model, i.e., skip
connections and covariance pooling. The advantages of newly
developed SCCov are twofold. First, by means of the skip connec-
tions, the multi-resolution feature maps produced by the CNN are
combined together, which provides important benefits to address
the presence of large-scale variance in RSSC data sets. Second,
by using covariance pooling, we can fully exploit the second-order
information contained in such multi-resolution feature maps. This
allows the CNN to achieve more representative feature learning
when dealing with RSSC problems. Experimental results, con-
ducted using three large-scale benchmark data sets, demonstrate
that our newly proposed SCCov network exhibits very competi-
tive or superior classification performance when compared with
the current state-of-the-art RSSC techniques, using a much lower
amount of parameters. Specifically, our SCCov only needs 10%
of the parameters used by its counterparts.

Index Terms— Covariance pooling, deep neural network,
multi-layer feature, scene recognition.

I. INTRODUCTION

REMOTE sensing scene classification (RSSC) has recently
gathered considerable attention as it can be adopted

in many practical applications, such as urban mapping and
land-use classification [1]. Given a query image, the goal of
the RSSC is to assign a unique label (e.g., airport, forest, and
so on) to the image, based on its contents. Due to the variance
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of the distance between the sensor and the earth, RSSC often
encounters the problem of large-scale variance (LSV) [2]–[4].
This is related to the fact that within the same scene category,
the images can present very different scales (some examples
illustrating this problem are given in Fig. 1). This makes RSSC
become a very challenging problem.

Over the past decade, we have witnessed the renew
of neural networks in the computer vision community,
most notably in tasks, such as image classification and
object detection [5], [6], face recognition [7], and scene
recognition [8]. In addition, due to their excellent perfor-
mance, deep neural networks have also been widely used in the
remote sensing community, particularly in applications such as
change detection [9]–[13], image super-resolution [14], hyper-
spectral image classification [15]–[19], high-resolution image
classification [20], and radar image classification [21], among
several others. The basic idea behind deep neural networks,
such as the well-known convolutional neural network (CNN),
is to represent the image with a deep hierarchical archi-
tecture (e.g., the Alexnet [22] and VGG16 [23]). By doing
so, the deep neural network, especially the CNN models,
can naturally extract feature maps with multi-resolution and
pyramidal shape across different layers, which can be then
utilized to address the LSV problem in image classification
and object detection [24].

In this paper, we specifically tackle the LSV problem in
RSSC by taking the characteristics of the CNN architecture
into account. Specifically, we embed a skip-connection module
into off-the-shelf CNN models, e.g., Alexnet and VGG16,
to concatenate multi-resolution feature maps for classification
purposes. In addition, a covariance pooling strategy is utilized
to aggregate the concatenated multi-resolution feature maps
from different layers. Compared to traditional max or average
pooling strategies, which only use first-order statistics (i.e.,
max or mean) to integrate the feature maps, the covariance
pooling offers the possibility to use the second-order statistics
information (i.e., covariance) to pool the feature maps. As a
result, more representative features can be learned. In order to
demonstrate the effectiveness of our contribution, comprehen-
sive experiments are presented in Section IV to demonstrate
the aforementioned aspects. Resulting from our newly pro-
posed methodology, a new end-to-end learning model called
skip-connected covariance (SCCov) network is presented and
discussed. Moreover, we also visualize the saliency map
obtained by the SCCov network to investigate its performance
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Fig. 1. Example to illustrate the problem of LSV in RSSC. From top
to bottom, we can observe the existing scale variability between objects
belonging to the same class in the following classes: airplane (top row),
storage tank (second row), harbor (third row), and bridge (bottom row),
respectively.

in RSSC applications. The main innovative contributions of
this paper can be summarized as follows.

1) We develop a new end-to-end learning model that
embeds two new modules into the CNN model for RSSC
purposes. The proposed approach exhibits competitive
or superior classification performance when compared
with current state-of-the-art methods, using a much less
amount of training parameters.

2) We investigate how our newly proposed SCCov network
performs in RSSC problems by visualizing the saliency
map of the test image, which gives us important insights
about the working mechanism of the SCCov network
model.

The remainder of this paper is organized as follows.
Section II discusses some related works and highlights the
innovative contributions of our method. Section III details the
architecture of the proposed SCCov network. In Section IV,
a comprehensive experimental assessment of the proposed
methodology (in comparison with other state-of-the-art meth-
ods) is conducted on three widely used data sets. Section V
concludes this paper with some remarks and hints at plausible
future research lines.

II. RELATED WORKS AND NOVELTY OF OUR METHOD

A. Related Works

During the past several years, a considerable number
of approaches have been proposed for RSSC. Generally,
these methods can be categorized into three main classes:
hand-crafted feature-based methods, feature learning-based
methods, and end-to-end learning systems.

1) Hand-Crafted Feature-Based Methods: Hand-crafted
feature-based methods usually consist of the following three
steps: 1) feature extraction; 2) feature encoding; and 3) clas-
sifier training. In the first step, a classical hand-crafted

feature descriptor, such as the scale-invariant feature
transform (SIFT) [25] or histogram of gradient (HoG) [26],
is used to extract features that represent the images, and
then, the obtained features are aggregated by some feature
encoding methods, such as bag of visual words (BoVW),
improved Fisher vector (IFK), sparse coding, or probabil-
ity topic models. Finally, the encoded features are used to
train a classifier [e.g., the support vector machine (SVM)] for
scene recognition. Some related methods can be found in [2]
and [27]–[34].

2) Feature Learning-Based Methods: Feature
learning-based methods usually adopt a similar procedure
as hand-crafted feature-based methods. However, instead of
using hand-crafted features (e.g., SIFT), feature learning-based
methods utilize some representation-based learning approaches
for feature extraction. Specifically, Zhang et al. [35] used
a sparse autoencoder for unsupervised feature learning
on saliency image patches. In [36], a shallow weighted
deconvolution network is utilized for feature extraction by
minimizing the Euclidean distance between the original and
the reconstructed image. Hu et al. [37] utilized spectral
clustering to discover intrinsic structures among image
patches for feature learning. Recently, due to the powerful
generalization ability exhibited by CNN models [38], [39],
CNN models that have been pre-trained on ImageNet [40]
have widely been used as feature extractors for RSSC.
Hu et al. [41] investigated different CNN models as feature
extractors and integrate them with various feature encoding
methods for RSSC purposes. Their results show that using
the CNN model as a feature extractor, usually results in
better performance than that provided by hand-crafted
feature-based methods. Cheng et al. [42] utilized the BoVW
model to aggregate the convolutional activation layer. In [43],
the last two fully connected (FC) layers of a CNN model
are combined together to represent the image. In [44],
a multi-scale IFK coding method is proposed to integrate the
feature maps from different layers. He et al. [45] adopted
a simple yet effective method (i.e., covariance pooling) to
combine the different layers of pre-trained CNN models for
RSSC. In [46], a feature ensemble framework is proposed
to combine hand-crafted features and features extracted by a
pre-trained CNN model.

3) End-to-End Learning Systems: In general, the methods in
the two previously discussed categories exhibit a satisfactory
classification performance. However, these methods are made
up of several separated steps, and thus, a large storage space is
needed to store the intermediate results (features). This limits
their potential application in practice. Under this context,
the development of end-to-end systems represents a promis-
ing direction for RSSC. Castelluccio et al. [47] fine-tuned
two classical pre-trained CNN models (i.e., Caffenet and
GoogLenet) for RSSC purposes. Cheng et al. [48] added a new
item into the loss function of the aforementioned pre-trained
CNN model to minimize the intra-class distance and maxi-
mize the inter-class distance, thus improving the classification
performance. However, this method [48] needs to measure
the distance between different images, and thus, the image
pairs need to be selected manually as the input of the CNN,
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Fig. 2. Architecture of the proposed SCCov network. The off-the-shelf VGG16 is used as the backbone for illustration purposes. The feature maps from
different layers are combined together by the skip connection operation, followed by a covariance pooling strategy. Concat denotes the concatenate operation,
SVD denotes the singular value decomposition, and Vec stands for the vectorization operation. Avg denotes average pooling and CWAvg stands for channel-wise
average pooling (see Section III and Table I for additional notations and details).

which is quite consuming from a computational standpoint.
In [49], a multi-scale CNN model is presented to address the
LSV problem in RSSC. Anwer et al. [50] extracted a classical
feature descriptor, i.e., local binary pattern (LBP), as the input
of the CNN model. By considering object-level information,
the region proposal network [51] is added to the CNN model
in [52] to enhance the classification performance in an RSSC
context. In [53], a deep structural metric learning model that
can explore the structural information among training samples
is presented and discussed in the context of RSSC applications.

B. High-Order Pooling

Recently, the exploitation of high-order information in deep
neural networks has become a hot topic in the computer
vision community, since the traditional CNN models only
take the first-order information into consideration. In [54],
a bilinear pooling network was first proposed for fine-grained
classification, which achieved state-of-the-art classification
performance. Li et. al. [55] further investigated the utilization
of second-order pooling for the classification of large-scale
image data sets. Moreover, considering the possible comple-
mentarities between the first-order features (i.e., those obtained
by average pooling) and the second-order features (i.e., those
obtained by high-order pooling), some works proposed to
combine these two kinds of features. Specifically, in [56],
the first-order information obtained by average pooling and the
second-order information obtained by a bilinear model [54]
are combined together by a concatenation operation. In addi-
tion, in [57], a Gaussian embedding strategy was applied to
fuse the first-order and the second-order information.

C. Novelty of the Proposed Method

The proposed SCCov network belongs to the third discussed
category, i.e., end-to-end learning systems. Compared to
hand-crafted feature-based methods or feature learning-based
methods, our method can be trained in an end-to-end fash-
ion, thus enhancing the obtained classification performance.
Compared to the methods in [48], [50], and [52], the pro-
posed method does not need to perform image preprocessing
(e.g., searching image pairs or feature extraction) and also

shows better classification performance than the methods
in [48]–[50] and [52], as well as competitive classification
performance when compared to the method in [48]. An impor-
tant characteristic of our method is that it needs a much
lower amount of training parameters. Specifically, our SCCov
network needs only 10% of the parameters required by its
counterparts. This is an important innovative aspect, since the
very reduced number of parameters required by our proposed
approach is more likely to avoid the problem of overfitting
when training a deep CNN model on a relatively small data set.

III. PROPOSED LEARNING NETWORK

Fig. 2 shows the architecture of the proposed SCCov
network using VGG16 as the backbone. Specifically, three
convolution layers: “conv3-3,” “conv4-3,” and “conv5-3” are
concatenated by means of skip connections. If the obtained
multi-resolution feature maps are denoted by X , we can
observe that the X volume is reshaped into a matrix along the
feature maps’ channel dimension. Then, a covariance pooling
layer is used to aggregate the obtained multi-resolution feature
maps. Finally, this layer is followed by an FC layer and a
softmax layer. In the following, we elaborate the newly added
modules, i.e., the skip connections and the covariance pooling.

A. Skip Connections for Multi-Layer Aggregation

Let us assume that three sets of feature maps with the same
spatial resolution are available, i.e., X1 ∈ R

H×W×D1 , X2 ∈
R

H×W×D2 , and X3 ∈ R
H×W×D3 . In this case, the aggregated

multi-resolution feature map X can be obtained by means of
a skip connections strategy as follows:

X = [X1;X2;X3] ∈ R
H×W×(D1+D2+D3) (1)

where [; , ; , ; ] denotes the concatenation operation along the
third dimension. An illustration of a skip connection strategy
for three feature maps is shown in Fig. 3. The motivation of
using skip connections to aggregate multi-layer feature maps
is twofold. First, as pointed in [5] and [24], the CNN model
can naturally extract feature maps with pyramidal shape by
means of hierarchical layers, which addresses the problem
of scale variance in classification and object detection tasks.
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Fig. 3. Graphical example illustrating the skip connections for three feature
maps. Concat refers to a concatenation operation.

Fig. 4. Graphical example illustrating the feature maps extracted from
different layers of Alexnet for three different images. (a) Input image.
(b) Feature map from the third convolutional layer. (c) Feature map from
the fourth convolutional layer. (d) Feature map from the fifth convolutional
layer.

Second, the feature maps from different layers contain com-
plementary information [15], [41], [43], [45]. For illustrative
purposes, Fig. 4 shows an example using the feature maps
extracted from different layers of Alexnet. As can be seen,
such feature maps exhibit various characteristics and therefore
provide complementary information that can be exploited by
the skip connection operation to improve the classification
performance.

Note that, in order to concatenate feature maps with differ-
ent spatial resolutions, average pooling is adopted. In addition,
CWAvg pooling is also adopted to reduce the number of
channels of each set of feature maps, before concatenating
them together. The mathematical definition of the CWAvg
pooling is detailed as follows. Given a 3-D feature map tensor
Y = [Y1; Y2; . . . ; YL ] ∈ R

H×W×L , where Yi ∈ R
H×W is a

single feature map, and assuming stride k, the CWAvg pooling
is conducted as follows:

Z j = 1

k

j×k�
i=( j−1)×k+1

Yi , j = 1, 2, . . . , L/k. (2)

As a result, the output feature map tensor Z =
[Z1, Z2, . . . , Z L/k] ∈ R

H×W×(L/k) is obtained. In practice,

we choose the value of k to make sure that L is divisible
by k. In other words, L/k is an integer.

B. Forward Propagation of Covariance Pooling

Given a feature matrix X ∈ R
D×N (e.g., the matrix X

in Fig. 2) with each row being normalized by the l2-norm,
where D = D1 + D2 + D3 is the dimensionality of the features
and N = H × W is the number of features, the forward
propagation of covariance pooling is conducted as follows.
First, a covariance matrix C is calculated

X �→ C, C = X Î X T (3)

where Î = (1/N − 1)(I − (1/N)11T ), I is an N × N identity
matrix, and 1 is an N-dimensional column vector with all
entries set to 1. Then, the matrix logarithm is used to transform
the covariance matrix from a manifold space to Euclidean
space in order to obtain the pooled feature F [58]

C �→ F, F = U log(�)U T (4)

where C = U�U T , and U and � are the eigenvector matrix
and eigenvalue matrix of C . In Fig. 2, f is the vectorization
of F . Note that, F is symmetric matrix, and therefore, only
the entries in the upper triangle of F need to be vectorized,
i.e., the dimensionality of vector f is D(D + 1)/2.

C. Backward Propagation of Covariance Pooling

Different from the traditional max or average pooling strate-
gies, which process the spatial coordinates of the intermediate
variable (a matrix or a vector) independently, covariance
pooling is based on global and structured matrix computations.
Here, we adopt the matrix back-propagation methodology
formulated in [59] to compute the partial derivative of loss
function L with respect to the input matrix of covariance
pooling. Given the partial derivative propagated from the upper
FC layer, (∂L/∂ F), we first consider (∂L/∂U) and (∂L/∂�).
The chain rule expression is shown in the following:

∂L

∂U
: dU + ∂L

∂�
: d� = ∂L

∂ F
: d F (5)

where d(·) denotes the variation of the corresponding variable.
Symbol : is the operation, and A : B = trace(AT B). From (4),
we can obtain the following formulation:

d F = dU log(�)U T + Ud(log(�))UT + Ulog(�)dUT. (6)

Plugging (6) into (5), (∂L/∂U) and (∂L/∂�) are derived as
follows: ⎧⎪⎪⎨

⎪⎪⎩
∂L

∂U
=

�
∂L

∂ F
+

�
∂L

∂ F

	T



U log(�)

∂L

∂�
= �−1U T ∂L

∂ F
U.

(7)

Next, for the given (∂L/∂U) and (∂L/∂�), let us compute
(∂L/∂C) through the eigendecomposition (EIG) of C and C =
U�U T . The chain rule expression is detailed as follows:

∂L

∂C
: dC = ∂L

∂U
: dU + ∂L

∂�
: d�. (8)
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Similar to (6), we can obtain the variant of matrix C

dC = dU�U T + Ud�U T + U�dU T . (9)

By combining (8) and (9), and using the properties of the
matrix inner product, :, and the properties of the EIG, the par-
tial derivatives of the loss function L with respect to C can
be derived as follows:

∂L

∂C
= U

��
K ◦

�
U T ∂L

∂U

	
sym



+

�
∂L

∂�

	
diag

�
U T (10)

where ◦ denotes the Hadamard product, (·)sym denotes a sym-
metric operation, (·)diag is (·) with all off-diagonal elements
being 0, and K is computed by manipulating the eigenvalues
σ in � as shown in the following:

K (i, j) =
⎧⎨
⎩

1

σi − σ j
, if i �= j

0, if i = j.
(11)

More details about the calculation of (7) and (10) can be
found in [59]. Finally, given (∂L/∂C), the partial derivative
of the loss function L with respect to feature matrix X is
computed as follows:

∂L

∂ X
= Î X T

�
∂L

∂C
+

�
∂L

∂C

	T



. (12)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Sets

To assess the performance of our newly proposed method,
we perform extensive experiments on three popular remote
sensing scene image data sets.

1) The AID30 (AID) [4] data set comprises 10 000 images
divided into 30 scene classes. Each class contains hun-
dreds of images, ranging from 220 to 420, with a size of
600 × 600 pixels in RGB space. The spatial resolution
changes from about 8 to 0.5 m. Fig. 5 shows some
examples of the AID data set.

2) The UC Merced Land Use (UC) [2] data set consists
of 2100 images and 21 scene categories. Each class
consists of 100 images with a size of 256 × 256 pixels
in RGB color space. Each image has a pixel resolution
of one foot. Fig. 6 shows some examples of the UC data
set.

3) The NWPU-RESISC45 (NWPU) [3] comprises
31 500 images that are divided into 45 scene classes.
Each class consists of 700 images with a size of
256 × 256 pixels in RGB space. The spatial resolution
changes from about 30 to 0.2 m/pixel for most of
the scene classes. This is one of the largest data set
available according to the number of scene classes and
the total number of images. Thus, it contains large-scale
image variations, within-class diversity, and inter-class
similarity when compared with the other data sets.

Fig. 5. Some examples of the AID data set used in experiments.

Fig. 6. Some examples of the UC data set used in experiments.

B. Implementation Details

In our experiments, two popular off-the-shelf CNN models,
Alexnet [22] and VGG16 [23], are adopted as the backbone to
derive the proposed SCCov network. Specifically, three convo-
lutional layers (i.e., “conv3,” “conv4,” and “conv5”) of Alexnet
and three convolutional layers (i.e., “conv3-3,” “conv4-3,” and
“conv5-3”) of VGG16 are selected as multi-scale feature maps.
The detailed architecture of the proposed SCCov network is
presented in Table I. In addition, Table II shows a comparison
focused on the amount of parameters needed by the original
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TABLE I

ARCHITECTURE OF SCCOV NETWORK BASED ON ALEXNET AND VGG16. THE INPUT IMAGE SIZE IS 227 × 227 FOR ALEXNET AND 224 × 224 FOR
VGG16. THE LAYER NAMES IN BOLD INDICATE THAT SUCH LAYERS ARE COMBINED BY SKIP CONNECTIONS. CWAVG POOLING DENOTES

CHANNEL-WISE AVERAGE POOLING. FEA DENOTES FEATURE AND PROB STANDS

FOR PROBABILITY

TABLE II

COMPARISON OF THE AMOUNT OF PARAMETERS NEEDED BY THE ORIGINAL CNN AND THE PROPOSED SCCOV NETWORK USING THE UCM21 DATA

SET. FC DENOTES THE FULLY CONNECTED LAYER. CONV STANDS FOR THE CONVOLUTIONAL LAYER

CNN and our SCCov network, using the UCM21 data set
(that contains 21 categories). As it can be observed, since the
SCCov network contains less FC layers, it requires much less
parameters than its counterpart. To train the proposed SCCov
network, a two-stage training strategy is adopted. In the first
training stage, we only train the last FC layer by freezing all
the previous layers. Then, we unfreeze all the previous layers
and train them together using the last FC layer. The learning
rate is set to 0.001, and the weight decay is set to 0.0005 for

all the unfrozen layers, on the two considered training stages.
The batch size is set to 64. An Adagrad optimizer [60] is
used for optimization. The details of the experimental settings
are shown in Table III. In the first training stage, the last
FC layer is initialized by means of a Gaussian distribution
with zero mean and standard deviation of 0.01. The random
horizontal flipping with 50% probability method is adopted for
data augmentation, and no other data augmentation approaches
are used. The proposed SCCov network is implemented on
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the MatConvNet [61] (a MATLAB toolbox for CNN).1 Since
random sampling is utilized to generate the training and test
sets [3], all experiments are carried out five times. Therefore,
we report the average and standard deviation of the overall
accuracy (OA) after five runs. We will make our code available
online.2

C. Comparison With State-of-the-Art Approaches

In this section, we compare our method with other state-
of-the-art techniques for RSSC. Specifically, we conduct
three different experiments with each of the considered data
sets.

1) Experiment 1 AID Data Set: First, we conduct experi-
ments on the AID data set. Following the experimental setup
of [4], two kinds of data splits are used here. In the first
split, 20% of the available samples are randomly selected for
training and the rest of them are used for testing. In the second
split, 50% of the available samples are randomly selected for
training and the rest of them are used for testing. The following
five approaches are considered for comparison.

1) Fine-tuned Alexnet and VGG16. Here, the last FC layer
of the CNN model is replaced by a randomly initialized
layer with specified output dimension (i.e., the output
dimension is equal to the number of categories) and then
trained on the test data set.

2) The method in [43], in which the authors utilize VGG
net as the feature extractor and concatenate two FC lay-
ers in order to obtain the final features. Here, the linear
SVM is used for classification.

3) The multi-layer stacked covariance pooling (MSCP)
method in [45], where covariance pooling is used to
combine deep features extracted by a pre-trained CNN
model.

4) A multi-scale CNN [49], where the authors established
two categories of CNNs, i.e., a fixed-size CNN and a
variable-size CNN, in an attempt to address the problem
of LSV in RSSC.

5) The discriminative CNN (DCNN) in [48], in which
metric learning is combined with a CNN model to
enlarge the distance between different classes and reduce
the distance within the same class.

Table IV shows the classification results obtained in this
experiment. As can be seen, the proposed SCCov network with
VGG16 as the backbone outperforms the rest of the methods
in almost all the cases. For example, when training rate
(Tr) = 20%, the proposed SCCov network can achieve 93.12%
OA, which surpasses the classification accuracy obtained by
the baseline method (i.e., the fine-tuned VGG16, with OA =
90.53%) and the MSCP (with OA = 91.52%) by 2.59% and
1.6%, respectively. A similar situation can also be observed
when using the Alexnet as the backbone. In addition, Fig. 7
shows the confusion matrices obtained by the baseline method
(i.e., the fine-tuned VGG16) and the proposed framework on
the same single experiment with Tr = 50%. From Fig. 7,

1http://www.vlfeat.org/matconvnet/
2https://github.com/henanjun

TABLE III

SETTING OF HYPERPARAMETERS FOR THE OPTIMIZATION OF THE
PROPOSED SCCOV NETWORK. Lr DENOTES THE LEARNING

RATE, CONV DENOTES THE CONVOLUTIONAL LAYER,
AND FC STANDS FOR THE FC LAYER

TABLE IV

COMPARISON OF OAs (%) OBTAINED ON THE AID DATA SET. THE

BEST VALUE IS HIGHLIGHTED IN BOLD. *PARAMETERS DENOTE

THE WEIGHTS THAT NEED TO BE LEARNED
IN A NEURAL NETWORK

the following two observations can be concluded. First, the fol-
lowing categories, 7# (church), 23# (resort), 25# (school), and
27# (square), are the ones that are more difficult to recognize
for both the fine-tuned VGG16 and the proposed SCCov
network. The classification accuracy obtained for those classes
by both the fine-tuned VGG16 and our SCCov network did not
surpass 85%, which is lower than the classification accuracy
obtained on the remaining categories. This is mainly due to
the fact that these categories usually contain the same objects,
such as buildings and trees, which makes these categories be
difficult to discriminate. Second, we can also observe that the
proposed SCCov network improves the classification accuracy
of most categories when compared to the fine-tuned VGG16.
For example, the classification accuracy of category 1# (air-
plane) is improved from 94.4% to 96.1%; the classification
accuracy of category 6# (center) is improved from 87.7% to
90.0%, and the classification accuracy of category 25# (school)
is improved from 82.0% to 88.7%. These results demonstrate
the effectiveness of the proposed framework.

2) Experiment 2 UC Data Set: In this experiment, we use
the UC data set for evaluating the performance of the proposed
network. In this experiment, 80% of the samples are randomly
selected for training and the rest are used for testing, which
corresponds to the standard spilt for the UC data set [2].
The following approaches are used for comparison in this
experiment:

1) the fine-tuned Alexnet and VGG16;
2) the methods in [43], [45], [48], and [49];
3) two state-of-the-art hand-crafted feature-based meth-

ods, i.e., SIFT+BoVW [2] and a feature ensemble
method [34];

4) the method in [44], where an IFK and multi-scale res-
olution analysis are adopted to fuse the convolutional
features from different layers.

The classification results are reported in Table V. From
Table V, we can observe that the proposed method outperforms
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Fig. 7. Confusion matrices obtained by different methods on the AID data set with Tr = 50%. The leftmost matrix is obtained by a fine-tuned VGG16, and
the rightmost one is obtained by the proposed SCCovnet with a pre-trained VGG16 as the backbone.

TABLE V

COMPARISON OF OAs (%) OBTAINED ON THE UC DATA SET. THE

BEST VALUE IS HIGHLIGHTED IN BOLD. *PARAMETERS
DENOTE THE WEIGHTS THAT NEED TO BE LEARNED

IN A NEURAL NETWORK

all the counterparts with OA of 99.05%. Moreover, Fig. 8
shows the confusion matrices obtained by the baseline method
(i.e., the fine-tuned VGG16) and the proposed framework in
one single experiment. From the confusion matrices, we can
also observe that the following categories are relatively diffi-
cult to recognize: 1) 7# (dense residential); 2) 13# (medium
residential); and 3) 20# (storage tank). This is because the first
two categories have very similar semantic information—they
all describe residential areas and the only difference among
them is the density of the buildings. Thus, it could easily lead
to misclassifications. In this regard, the proposed SCCov net-
work can also improve the classification performance achieved
by the fine-tuned VGG16 in most categories. For instance,
the OA of category 1# (agriculture) is improved from 95% to
100% and the OA of category 5# (building) is improved from
85% to 100%.

3) Experiment 3 NWPU Data Set: Finally, the proposed
SCCov network is also compared to several RSSC methods
using the NWPU data set. These methods include the follow-
ing:

1) the fine-tuned Alexnet and VGG16;
2) the methods in [45] and [48];
3) the method in [42], where the BoVW method is used to

encode the convolutional features for RSSC.

Two kinds of data splits are used in this experiment for
comprehensive comparison. The first one randomly selects

TABLE VI

COMPARISON OF OAs (%) OBTAINED ON THE NPWU DATA SET. THE

BEST VALUE IS HIGHLIGHTED IN BOLD. *PARAMETERS DENOTE THE
WEIGHTS THAT NEED TO BE LEARNED IN A NEURAL NETWORK

TABLE VII

COMPARISON OF OAs (%) AND KAPPA COEFFICIENTS OBTAINED ON

THE NWPU DATA SET IN OUR ABLATION EXPERIMENTS. THE BEST
VALUES ARE HIGHLIGHTED IN BOLD

10% of the available samples for training and uses the rest
of them for testing. The second one randomly selects 20%
of the available samples for training and uses the rest of
them for testing. Both data splits are derived following the
experimental setup in [3]. The classification results obtained
by these methods are shown in Table VI. As can be seen
in Table VI, the proposed SCCov network exhibits a better
classification performance than the rest compared methods.

D. Ablation Experiments

In this section, we conduct two ablation experiments to,
respectively, demonstrate the effectiveness of our two new
modules, i.e., skip connections and covariance pooling. The
NWPU data set has been selected for illustrative purposes,
with 10% of the available samples randomly selected for
training and the rest of the samples used for testing. The
experimental settings, including training strategy, batch size,
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Fig. 8. Confusion matrices obtained by different methods on the UC data set with Tr = 80%. The leftmost matrix is obtained by a fine-tuned VGG16, and
the rightmost one is obtained by the proposed SCCovnet with a pre-trained VGG16 as the backbone.

Fig. 9. Visualization results obtained by the fine-tuned Alexnet and SCCov network on the AID data set. The first line contains the original image, the second
line contains the saliency image obtained by the fine-tuned Alexnet, and the last line contains the saliency image obtained by the SCCov network. Both the
fine-tuned Alexnet and the proposed SCCov network are trained on the same data set split, and the images from the test set are used for visualization purposes.
The description under the original image is the true label, while the description under the saliency image is the prediction label. (a)–(c) Classified correctly
by both fine-tuned Alexnet and SCCov net. (d)–(f) Classified correctly only by SCCov net.

and learning rate, are kept the same for our SCCov network
before and after ablation for a fair comparison.

1) Experiment 1: In the first ablation experiment,
we remove the skip connection module of the SCCov network
and append the covariance pooling behind the last convolu-
tional layer (SCCov network without skip). Specifically, for the
Alexnet, the covariance pooling is appended after the “conv5”
convolutional layer. For the VGG16, the last convolution layer
“conv5-3” is first transformed by a 1 × 1 convolutional kernel
and then followed by the covariance pooling. The 1 × 1
convolutional kernel is adopted here to make sure that the
SCCov network has the same amount of training parameters
before and after the ablation. Note that, the other components
along with the training strategy and the hyperparameters of
the SCCov network without skip are kept the same as in

the original SCCov network. The experimental results based
on the OA and Kappa coefficient are shown in Table VII.
For more comprehensive comparison, the classification results
of the baseline methods (i.e., the fine-tuned Alexnet and
fine-tuned VGG16) are also shown. As it can be observed, after
removing the skip connections module from the SCCov net-
work, the classification performance of the proposed SCCov
network drops significantly. For example, with the VGG16 as
the backbone, the classification accuracy achieved by the pro-
posed SCCov is 89.30%, whereas the classification accuracy
achieved by SCCov without skip connections is 87.33%. Addi-
tionally, we can also observe that the Kappa coefficient for
the proposed method is 89.17%, while the Kappa coefficient
for the SCCov without skip connections [62], [63] is 87.02%.
Both the classification accuracy and the Kappa coefficient drop
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Fig. 10. Visualization results obtained by the fine-tuned Alexnet and SCCov network on the UC data set. The first line contains the original image, the second
line contains the saliency image obtained by the fine-tuned Alexnet, and the last line contains the saliency image obtained by the SCCov network. Both the
fine-tuned Alexnet and the proposed SCCov network are trained on the same data set split, and the images from the test set are used for visualization purposes.
The description under the original image is the true label, while the description under the saliency image is the prediction label. (a)–(c) Classified correctly
by both fine-tuned Alexnet and SCCov net. (d)–(f) Classified correctly only by SCCov net.

over 1.9%. The main reason is that with the skip connections’
module, the multi-resolution feature maps with pyramidal
shape can be integrated together, which is helpful to address
the problem of LSV in RSSC.

2) Experiment 2: In the second ablation experiment,
the covariance pooling in the proposed SCCov network is
replaced by a classical pooling strategy, i.e., global average
pooling (GAP) [64]. Specifically, the GAP is appended behind
the concatenated multi-resolution feature map, which is fol-
lowed by FC and a softmax layer. The method after ablation is
denoted by the SCCov network with GAP. The corresponding
classification results based on the OA and the Kappa coef-
ficient are reported in Table VII. For more comprehensive
comparison, the classification results of the baseline method
(i.e., fine-tuned Alexnet and fine-tuned VGG16) are also
shown. From Table VII, we can observe that the proposed
SCCov network can outperform the SCCov network with
GAP by a considerable margin. For instance, with Alexnet
as the backbone, the classification performance obtained by
the SCCov network with GAP is less than 76%, while the
classification performance obtained by the SCCov is 84.33%.
In addition, the Kappa coefficient for the SCCov with GAP is
75.21%, whereas the Kappa coefficient of the proposed method
is 84.22%. The improvement in terms of both OA and Kappa
coefficient obtained by the covariance pooling method is over
8%. The main reason is that the covariance pooling can fully
exploit the high-order information among the multi-resolution
feature maps, which is beneficial to learn more representative
features.

E. Statistical Test

In order to better assess the statistical significance of
the difference between the proposed method and the base-
line methods (i.e., the fine-tuned Alexnet and the fine-tuned
VGG16), we conduct McNemar’s test [65], which is based
upon a standardized normal test as described in the following:

Z = l12 − l21√|l12 − l21| (13)

where l12 indicates the number of samples classified correctly
by method 1 and incorrectly by method 2. If |Z | > 1.96,
we can conclude that the difference in accuracy between
methods 1 and 2 is statistically significant. The sign of Z
indicates whether method 1 is more accurate than method
2 (Z > 0) or vice versa (Z < 0). McNemar’s test results
corresponding to our study are reported in Table VIII. As can
be seen, all the values of Z are much greater than 1.96, and
thus, we can conclude that the improvements of our proposed
method over the baseline methods are statistically significant.

F. Visualization Experiment

In this experiment, we attempt to figure out which parts of
the considered images make more significant contributions to
the final scene recognition to further investigate the working
mechanism of SCCov network. To achieve this goal, we visu-
alize the saliency of the test image obtained by the SCCov
network with Alexnet as the backbone. Specifically, we first
find the weight in the last FC with respect to the max score
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Fig. 11. Visualization results obtained by the fine-tuned Alexnet and SCCov network on the NWPU data set. The first line contains the original image,
the second line contains the saliency image obtained by the fine-tuned Alexnet, and the last line contains the saliency image obtained by the SCCov network.
Both the fine-tuned Alexnet and the proposed SCCov network are trained on the same data set split, and the images from the test set are used for visualization
purposes. The description under the original image is the true label, while the description under the saliency image is the prediction label. (a)–(c) Classified
correctly by both fine-tuned Alexnet and SCCov net. (d)–(f) Classified correctly only by SCCov net.

TABLE VIII

STATISTICAL SIGNIFICANCE, MEASURED BY MCNEMAR’S TEST, FOR THE

PROPOSED SCCOV NET AND THE BASELINE METHODS

in the softmax layer, and then, the obtained weight is used as
the derivative of the last FC for backward propagation to get
the derivative of the input image with respect to the weight.
Finally, the derivative of the input image is regarded as the
saliency image, and the dot product of the saliency image
and the original image is used for visualization purposes.
In addition, to make a comprehensive comparison, the saliency
images obtained by the baseline fine-tuned Alexnet are also
visualized. The visualization results of some samples from
the three test data sets are shown in Figs. 9–11. From the
visualization results, the following three observations can be
made. First, the working mechanism of the CNN model is
similar to a human vision recognition system when recog-
nizing a remote sensing scene image, that is, to recognize a
scene, the human vision system pays more attention to the
representative objects in the scene. For example, in order to
recognize an airport scene, both the fine-tuned VGG16 net
and the proposed method pay more attention to the airplane

in the scene, which corresponds to the highlighted zoomed-in
view of the saliency images (see the first column in Fig. 9).
To recognize a parking scene, both two networks focus on the
cars (see the third column in Fig. 9). Second, we can see that
the fine-tuned Alexnet pays less attention to the representative
objects in a scene, despite making the correct prediction
[see Figs. 9(a)–(c), 10(a)–(c), and 11(a)–(c)]. Last but not least,
in Figs. 9(d)–(f), 10(d)–(f), and 11(d)–(f), we can observe
that the baseline method latches on the incorrect objects in
the remote sensing scene categories, which are corrected by
the proposed SCCov network. We emphasize that the afore-
mentioned explanation of the visualization results is intuitive
and qualitative. A more quantitative and precise interpretation
needs to be developed in the future developments.

V. CONCLUSION

In this paper, we presented a new end-to-end learning model
called SCCov network for remote sensing scene classification.
By introducing two new components, i.e., skip connections and
covariance pooling in the associated CNN, our SCCov network
can not only combine the multi-resolution feature maps from
different layers in the CNN model together but also exploit
the high-order information for achieving a more representative
feature learning. Comprehensive experiments on three publicly
available remote sensing image scene classification data sets,
as well as a detailed comparison with state-of-the-art methods,
verify the effectiveness of our newly developed approach.
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In the future, we will explore the development of quan-
titative experiments to analyze the visualization and inter-
pretation of results performed by our SCCov compared to
other approaches. Moreover, we will also consider combining
the first-order information and the second-order information
of feature maps in the CNN model to further improve the
classification performance.
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