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Abstract— High-resolution digital surface models (DSMs) pro-
vide valuable height information about the Earth’s surface, which
can be successfully combined with other types of remotely sensed
data in a wide range of applications. However, the acquisition of
DSMs with high spatial resolution is extremely time-consuming
and expensive with their estimation from a single optical image
being an ill-possed problem. To overcome these limitations,
this letter presents a new unpaired approach to obtain DSMs
from optical images using deep learning techniques. Specifically,
our new deep neural model is based on variational autoen-
coders (VAEs) and generative adversarial networks (GANs)
to perform image-to-image translation, obtaining DSMs from
optical images. Our newly proposed method has been tested
in terms of photographic interpretation, reconstruction error,
and classification accuracy using three well-known remotely
sensed data sets with very high spatial resolution (obtained over
Potsdam, Vaihingen, and Stockholm). Our experimental results
demonstrate that the proposed approach obtains satisfactory
reconstruction rates that allow enhancing the classification results
for these images. The source code of our method is available from:
https://github.com/mhaut/UIMG2DSM.

Index Terms— Digital surface models (DSMs), generative
adversarial networks (GANs), image-to-image problems, optical
imaging, variational autoencoder (VAEs).

I. INTRODUCTION

D IGITAL surface models (DSMs) [1] are 2-D-data prod-
ucts that capture the height information from the Earth’s

surface, taking into account all natural and man-made objects
to provide detailed elevation (height) data. In addition to
laser scanning or digitized topographic maps, very high
resolution (VHR) DSMs can be obtained by processing
optical and stereoscopic images captured by both aerial
and satellite instruments with submetric ground resolu-
tion (e.g., Quickbird, IKONOS, WoldView-2, GeoEye-2, or
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Cartosat-1 missions) [2]. These instruments exhibit great spa-
tial details that can be exploited to provide accurate DSMs
for a wide range of applications, such as management of
agricultural and natural resources [3], urban planning [4], and
catastrophe/damage assessment [5]. Also, the combination of
DSMs with VHR optical image data has been proven to be
very useful in land-cover classification tasks [6], where the
spectral characteristics of the materials are combined with
their height in order to obtain highly discriminative features,
thus facilitating the categorization of the elements present in
a remotely sensed scene. However, the acquisition of VHR
DSMs is quite expensive and time-consuming. Although there
have been some efforts to create public DSM databases [7],
the availability of pairs made up of optical image data and
their corresponding VHR DSMs is still limited.

In order to overcome these limitations, several algorithms
have been developed for the retrieval of DSMs from VHR
optical images. Of particular importance are those based
on deep learning techniques [8], which have aroused great
interest in the remote sensing community [9]–[11] due to
their flexibility to implement different neural architectures
and learning modes. In particular, the convolutional neural
network (CNN) has become the current state of the art in this
domain, due to its high generalization power and performance
when extracting mid- and high-level abstract features. The
CNN has been successfully employed to estimate DSMs from
single monocular-optical images [12]–[14]. However, the CNN
works as a discriminative model, that is, as a mapping function
f (·, θ f ) with trainable parameters θ f and maps the original
input data x ∈ X to some desired output y ∈ Y , learning
conditional distributions p(y|x) by minimizing a loss function
(i.e., modeling the decision boundary). This generally demands
a huge effort to design an effective loss function, resulting
in overfitting and blurring problems. In contrast, generative
approaches such as variational autoencoders (VAEs) [15]
and generative adversarial networks (GANs) [16] model the
data distributions by learning the joint probability p(x, y),
generating new samples instead of evaluating the available
ones. In particular, GANs are able to map a complex data
distribution pI from a low-dimensional latent space pZ by
optimizing a loss function that recognizes whether the data
are real or generated. In this sense, the GAN is a very inter-
esting deep learning model for the generation of DSMs. For
instance, in the pioneering work by Ghamisi and Yokoya [17],
a conditional GAN (cGAN) [18], [19] was implemented with
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Fig. 1. Proposed network topology. Both branches receive data patches of 256 × 256 × 3, being the DSM data replicated until obtaining three spectral bands.
The spatial-downsampling has been made (using a factor of two in E1 and E2) by setting stride = 2 in the convolutional layers, while in D1 and D2 average
pooling is implemented, also with a factor of 2.

DSM data as additional information during the training stage
to simulate the desired elevation information from a single
optical image. However, despite its good performance during
reconstruction and classification, this model needs aligned
pairs of corresponding optical-DSM data, which may not
always be readily available in real scenarios.

In order to overcome the aforementioned limitation, this let-
ter presents a new unpaired image-to-image translation (UNIT)
method, based on GANs and VAEs, for automatic DSM
generation from optical images. The UNIT problem is a
hard and ill-posed one, where an infinite number of joint
distributions can reach the marginal distributions of x and
y. In this context, additional assumptions must be adopted
in order to correctly infer the information about the joint
distribution [20]. In particular, we adopt the shared-latent
space assumption of Coupled GANs (CoGANs) [21], where
the corresponding data x and y are mapped into the same latent
code z ∈ Z , from which the DSM images are generated by
implementing a two-branch VAE-GAN architecture.

II. PROPOSED METHODOLOGY

The traditional GAN [16] is a generative mapping function
that mimics a data distribution pI from a random noise vector
z ∈ Z with prior pZ(z), following an adversarial process
where two neural models are simultaneously trained: 1) the
generative model G(·, θG) : Z → I, which tries to learn
the data distribution by approximating pG ≈ pI by adjusting
its trainable parameters θG and 2) the discriminative model
D(·, θD) : I or G → {0, 1}, which obtains the probability that
a sample belongs to pI or pG by adjusting its parameters θD.
In this context, the GAN follows a two-player minimax game
with a value function V (D,G) in order to learn the original
data distribution pG = pI

min
G

max
D

V (D,G) = Ex∼pI (x)[logD(x)]
+ Ez∼pZ (z)[log(1 − D(G(z)))]. (1)

The ultimate goal of GANs is to train G in order to maximize
D(G(z)), so that D is unable to differentiate between the
original and artificially generated samples.

Usually, the GAN-based model for image-to-image trans-
lation takes an image from one domain x ∈ X as input of
G (instead of the fixed-size noise vector z) and outputs the
corresponding image in the target domain y ∈ Y , employing a
G with an encoder–decoder architecture and skip connections.
Also, D usually returns a matrix of values instead of the
traditional [0, 1] in order to preserve the image details [17].
In this sense, the goal of G is to learn the joint distribution
pG ≈ pX ,Y that relates each image x in domain X with its
counterpart y in domain Y . From an unpaired point of view,
we assume that there are no pairs of {x, y} available to train
the model, where x and y exhibit their corresponding and
independent marginal distributions pX (x) and pY(y). In this
context, there are infinite solutions (i.e., joint distributions) that
can yield the marginal distributions, this being an inherently
ambiguous and ill-posed problem.

To address this issue and further develop our U-
IMG2DSM method, we combine the weight-sharing constraint
of CoGANs [21] with the latent-enconding of VAE-GAN [22]
to adopt a shared-latent space assumption [20]. The proposed
network architecture is graphically illustrated in Fig. 1. It is
composed of six subnetworks: two encoder–decoder pairs (E1,
G1 and E2, G2, respectively) of two VAE-generators and
two adversarial discriminators (D1 and D2). Focusing on the
VAE-generators, for any pair of (not necessarily correlated)
images x and y introduced into the encoder-branches, there is a
shared-latent representation z ∈ Z , being z = E1(x) = E2(y),
from which the two images are recovered by the decoder-
branches, that is, x = G1(E1(x)) = G1(z ∼ Q1(z|x))
and y = G2(E2(y)) = G2(z ∼ Q2(z|y)), where both Q∗
follows a normal distribution N (z|Eμ,∗(·), I ) being Eμ,∗(·) the
encoder’s output mean vector. In this sense, our goal is to train
both generators to learn the mapping functions Fx→y and Fy→x

in such a way that each one translates the images given from
one domain to another, that is, providing their corresponding
pairs in the destination domains

x̂ = Fy→x(y) = G1(E2(y)) = G1(z ∼ Q2(z|y))

ŷ = Fx→y(x) = G2(E1(x)) = G2(z ∼ Q1(z|x)) (2)
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Fig. 2. IRRG images for Potsdam, Vaihingen, and Stockholm. Blue and green rectangles indicate training and test areas, respectively.

where x̂ and ŷ are the corresponding pairs of y and x in the
target domains, respectively, creating two image translation
streams. In this sense, G1 : Z → X mimics the distribution
pX , while G2 : Z → Y mimics pY . Regarding the discrim-
inators, D1 distinguishes between real X -domain images and
images generated by G1, while D2 discriminates between real
Y-domain images and images generated by G2, following a
three-branch structure to exploit multiscale features.

To correctly adjust the model’s parameters, a three-
component loss given by (3) is designed during training:
1) Lre1(E1, G1) and Lre2(E2, G2) are the image-reconstruction
losses, where the Kullback–Leibler divergence indicates the
deviation between the distribution of the obtained latent
code z and its prior distribution pη(z) = N (z|0, I );
2) Ltr1(E2, G1, D1) and Ltr2 (E1, G2, D2) are the
image-translation losses (based on the cGAN’s function)
to reinforce the learning of the target domains; and
iii) Lcc1(E1, G1, E2, G2) and Lcc2(E2, G2, E1, G1) are the
cycle reconstruction losses, in the sense that an image
translated twice needs to resemble the input one, that is,
x = Fy→x(Fx→y(x)) and y = Fx→y(Fy→x(y)), while the
obtained latent code z is constrained by its prior distribution.
θ0 = 1, θ1 = θ3 = 0.01, and θ2 = θ4 = 10 are some
hyperparameters needed to control the weight of each
element. This minimax problem is solved as two-player
zero-sum game, following the gradient update scheme of [16].
The parameters of our model have been initialized with the
Kaiming method [23] and optimized by the ADAM algorithm
with parameters β1 = 0.5 and β2 = 0.999, a learning
rate of 1 · 10−4, and weight decay of 1 · 10−4. Although
VAE-generators’ optimizers work on (3), the discriminators’
optimizer minimizes the least squares loss between the
translated and the original data. The maximum number of

epochs has been set to 1750, using a batch size of two
images (one per image domain), and 400 training images.
The data have been scaled into the [0, 1] range, with mirrored
borders.

III. EXPERIMENTAL RESULTS

A. Data Sets

Three remotely sensed images (over the cities of Potsdam,
Vaihingen, and Stockholm) have been considered. The Pots-
dam and Vaihingen images were provided by the ISPRS Work-
ing Group II/4,1 while the Stockholm image was provided
by DigitalGlobe2 and captured by WorldView-2. Potsdam is
composed of 38 tiles of orthophotographs with four bands
[near-infrared response (NIR), red, green, and blue]. Its DSM
has 6000 × 6000 pixels at ground sampling distance (GSD)
of 5 cm. The second data set, Vaihingen, comprises an
orthophotograph with three bands (NIR, red, and green), while
its DSM is composed of 2000 × 2889 pixels at GSD of 50 cm.
Finally, Stockholm comprises multispectral and panchromatic
images. In this case, the target area is of 4000 × 4000 pixels
at GSD of 50 cm. In order to avoid the spatial overlap between
the training and test samples, Potsdam and Vaihingen data sets
have been spatially divided into two subimages, while Stock-
holm is only used in the test stage. In particular, the training set
consists of 400 samples with 256 × 256 pixels (i.e., 200 from
Potsdam and 200 from Vaihingen), while the test set comprises
800 samples (200 from Potsdam, 200 from Vaihingen, and
400 from Stockholm). Fig. 2 shows the considered training
and test data, using blue and green rectangles, respectively.

1http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
2https://www.digitalglobe.com/resources/product-samples

min
E1,E2,G1,G2

max
D1,D2

Lre1(E1, G1)+Ltr1(E2, G1, D1)+Lcc1(E1, G1, E2, G2)+Lre2(E2, G2)+Ltr2(E1, G2, D2)+Lcc2(E2, G2, E1, G1)

whereLre1(E1, G1) = θ1KL(Q1(z|x)||pη(z)) − θ2Ez∼Q1(z|x)[log pG1(x|z)]
and Lre2(E2, G2) = θ1KL(Q2(z|y)||pη(z)) − θ2Ez∼Q2(z|y)[log pG2(y|z)]

whereLtr1(E2, G1, D1) = θ0Ex∼pX [log D1(x)] + θ0Ez∼Q2(z|y)[log(1 − D1(G1(z)))]
and Ltr2 (E1, G2, D2)=θ0Ey∼pY [log D2(y)]+θ0Ez∼Q1(z|x)[log(1−D2(G2(z)))]

where Lcc1(E1, G1, E2, G2) = θ3KL(Q1(z|x)||pη(z)) + θ3KL(Q2(z|ŷ)||pη(z)) − θ4Ez∼Q2(z|ŷ)[log pG1(x|z)]
and Lcc2(E2, G2, E1, G1) = θ3KL(Q2(z|y)||pη(z)) + θ3KL(Q1(z|x̂)||pη(z)) − θ4Ez∼Q1(z|x̂)[log pG2(y|z)] (3)
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Fig. 3. Results of elevation data simulation (obtained by different unpaired and paired methods) as compared with the ground truth for Potsdam. (a) RGB.
(b) Ground-Truth DSM. (c) CycleGAN. (d) U-IMG2DSM. (g) IMG2DSM.

Inspired by Ghamisi and Yokoya [17], infrared, red, and
green (IRRG) images have been employed, unifying the GSD
at 50 cm. Also, consistent with [17], we considered two
scenarios in our experiments to evaluate the performance of the
proposed approach. In the first scenario (which applies only to
the Potsdam and Vaihingen data sets), the training and test data
were selected from the same data sets with spatially separated
areas, as shown in Fig. 2. In the second scenario, we took
one step further and selected the training and test data from
different cities (imaged with entirely different data acquisition
platforms) to carefully investigate the generalization ability
and transferability of the method. In particular, we trained with
Potsdam and Vaihigen, and used Stockholm for testing.

B. Experimental Settings

Our experiments have been conducted on a 6th Generation
Intel Core i7-6700K processor with 8M of cache and up to
4.20 GHz (4 cores/8 way multitask processing), an NVIDIA
GeForce GTX 1080 graphics processing unit (GPU) with
8-GB GDDR5X of video memory and 10 Gbps of mem-
ory frequency, 40 GB of DDR4 RAM with a serial speed
of 2400 MHz, a Toshiba DT01ACA HDD with 7200 RPM
and 2 TB, and an ASUS Z170 pro-gaming motherboard.
Regarding our software environment, it is composed of Ubuntu
18.04.2×64 as the operating system, CUDA 9 and cuDNN
7.0.5, PyTorch framework [24] and Python 2.7.15 as the
programming language.

In order to evaluate the quality of generated DSMs, two
widely used metrics have been used: the root-mean-square-
error (RMSE), which provides information on the degree of
absolute error at each pixel in the unit of meters, and the
zero-mean normalized cross correlation (ZNCC), which quan-
tifies the spatial correlation between the output and ground

TABLE I

COMPARISON BETWEEN THE PROPOSED (UNPAIRED) U-IMG2DSM AND

THE (PAIRED) IMG2DSM IN [17]

truth. In addition, we consider the overall accuracy (OA),
average accuracy (AA), and kappa coefficient (K ) of the
classification of the resulting products.

C. Experimental Discussion

Two experiments have been conducted to evaluate the pro-
posed U-IMG2DSM model. The first one tests the performance
of the developed model (as compared to the paired IMG2DSM
in [17]) when generating the corresponding DSMs, while
the second experiment test the reliability of the obtained DSMs
by performing a classification task.

Table I shows a comparison between the proposed
(unpaired) U-IMG2DSM and the paired IMG2DSM in [17].
In this experiment, the training has been made using approx-
imately half of the Potsdam and Vaihingen data sets, testing
with the other half of these images (first scenario) and the
full Stockholm image (second scenario) to generate the corre-
sponding DSMs. Thus, the first scenario tests the performance
of the proposed method when training and test data follow the
same distribution (as they belong to the same data set), while
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TABLE II

CLASSIFICATION RESULTS WITH DIFFERENT METHODS FOR POTSDAM

in the second scenario the training and test samples follow
different distributions, as they belong to different scenes.
Although the IMG2DSM outperforms the proposed method
in terms of RMSE, ZNCC and runtime, our U-IMG2DSM
is fully unpaired and does not need any image-DSM pairs
in advance, which represents an advantage over the paired
model. Also, it requires fewer parameters than IMG2DSM to
achieve very close results, also being faster than CycleGAN.
In addition, Fig. 3 shows that the DSMs obtained by the
proposed U-IMG2DSM for the Potsdam data set (used here
as an example) are visually competitive with those obtained
for the same image by the IMG2DSM, reducing the confusion
between impervious surfaces and buildings, as indicated by the
red framed areas. This suggests the potential of the proposed
(fully unpaired) method to distinguish land covers that are
similar in spectral characteristics but different in elevation,
without using any prior information.

Table II shows the classification results obtained by the ran-
dom forest (RF) and multilayer perceptron (MLP) for the Pots-
dam image. Although the best results are obtained using the
IRRG image combined with the ground-truth DSM, the table
shows that, when simulated DSMs are used in addition to the
IRRG images, the classification accuracy can also significantly
increase (regardless of the considered classifier). In fact,
the proposed U-IMG2DSM performs better than the (unpaired)
CycleGAN and close to the (paired) IMG2DSM. These results
suggest that our new unpaired approach produces appropriate
elevation information for classification purposes without any
prior knowledge. These results suggest that our new unpaired
approach produces appropriate elevation information for clas-
sification purposes, without any prior knowledge.

IV. CONCLUSION

This letter introduces U-IMG2DSM, a new fully unpaired
model (based on VAEs and GANs) for the automatic gen-
eration of DSMs from optical images. Its architecture is
composed of six subnetworks—two encoder–decoder pairs of
two VAE-generators and two adversarial discriminators. Our
experimental results, conducted using data sets collected over
different cities by different data acquisition platforms, indicate
that our U-IMG2DSM outperforms unpaired approaches (e.g.,
CycleGAN) and performs very close to paired approaches
(e.g., IMG2DSM) in terms of RMSE, ZNCC, classification
accuracy, and visual interpretation (without using any prior
knowledge).
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