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Abstract—Recurrent neural networks, especially the convolu-
tional long short-term memory (ConvLSTM), have attracted plenty
of attention and shown promising results due to their ability in
modeling long-term dependencies in many research fields. In this
paper, a lightweight tensor attention-driven ConvLSTM neural
network (TACLNN) is proposed for hyperspectral image (HSI)
classification. Firstly, to reduce the trainable parameters and
memory requirements of ConvLSTM (specifically, the 2-D ver-
sion of LSTM, i.e., ConvLSTM2D), a lightweight ConvLSTM2D
cell is developed by utilizing tensor-train decomposition, result-
ing in a TT-ConvLSTM2D cell, with which a spatial-spectral TT-
ConvLSTM 2-D neural network (SSTTCL2DNN) is built. However,
it is inevitable for SSTTCL2DNN to obtain lower accuracies for
HSI classification. To recover the accuracy loss caused by the
TT-ConvLSTM2D cell in SSTTCL2DNN, a learnable tensor at-
tention residual block (TARB) module is built to further enhance
its geometrical structure. When applied to three widely used HSI
benchmarks, the proposed TACLNN model outperforms several
state-of-the-art methods for HSI classification. In addition, the pro-
posed TACLNN can effectively reduce the number of parameters
and storage requirements achieving higher classification accuracies
as compared to other competitive baselines.

Index Terms—Attention mechanism, convolutional long short-
term memory, hyperspectral image classification, lightweight cell,
performance recovery, tensor representation.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain very detailed
spatial and spectral information, which can be exploited

to analyze the information of the Earth’s surface [1]. These
images have been utilized in many applications, i.e., geological
exploration [2] and precision agriculture [3].

The classification of HSIs has become an important research
topic. According to the (available or not) labeled data, there are
three kinds of classification methods, i.e., unsupervised, semisu-
pervised, and supervised. Supervised methods generally provide
better accuracy. With the advance of deep learning in the field of
computer vision [4], [5], many techniques have been developed
for HSI classification. Since Hu et al. [6] and Chen et al. [7]
introduced the convolutional neural network (CNN) into HSI
classification, many CNN-based models have been proposed.
The pixel-pair model was integrated into CNN to extract the
spatial-spectral features [8]. In [9], spatial and spectral informa-
tion were fused by using CNN and a balanced local discriminant
embedding. To jointly learn the spatial-spectral features, some
researchers have designed many 3-D models [10], [11], where
the 3-D data yielded from the original HSI data serves as their
input. Luo et al. [12] and Roy et al. [13] utilized the hybrid
structure by integrating support vector machine (SVM), 2-D
CNN with 3-D CNN to solve overfitting problem. Fang et
al. [14] proposed a deep hashing neural network that improves
spatial-spectral features yielded from the classes. Considering
the limited availability of labeled data, some deep models (i.e.,
siamese CNN model [15]) have been designed to overcome this
issue. In addition, active learning [16] and transfer learning [17]
have been adapted to improve the training of these models under
limited samples. Paoletti et al. [18] conducted a systematic
review of deep models for HSI classification, and compared the
commonly-used classifiers, which provides effective guidelines
for the future research.

In addition to the above works, recurrent neural net-
works (RNNs) [19] –especially the long short-term mem-
ory (LSTM) [20] and its 2-D version, convolutional LSTM
(ConvLSTM) [21], renamed as ConvLSTM2D in [22]–
have attracted significant attention due to their unique ca-
pacity to model the long-range dependencies, from which
many spatial-spectral feature extraction algorithms have been
proposed by integrating CNNs and RNNs, such as the
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cascaded RNN [23], the multi-scale hierarchical recurrent
neural networks [24], semisupervised 1-D convolutional RNN
(CRNN) [25], 2-D CRNN and its 3-D version [26], and an adap-
tive spatial-spectral multiscale network [27]. Moreover, by using
LSTM and ConvLSTM2D cells as the basic units, the spatial-
spectral LSTMs (SSLSTMs) [28], bidirectional-ConvLSTM
(Bi-CLSTM) [29], and spatial-spectral ConvLSTM 2-D neural
network (SSCL2DNN) [22] were proposed for joint learning of
spatial-spectral features.

The attention mechanism was originally derived from com-
putational neurosciences [30] and can allow a model to au-
tomatically locate and focus on the most useful information
from the input. Since Bahdanau et al. [31] utilized the attention
mechanism to select reference words from the source sentences,
numerous works have shown that deep learning-based models
that incorporate attention mechanisms can gain better feature
representation ability [32]-[34]. Moreover, it has been applied to
the analysis of remote sensing images. Cui et al. [35] proposed a
dense attention pyramid network for ship detection in synthetic
aperture radar (SAR) images, where a convolutional attention
module with spatial- and channel-wise attentions is designed for
highlighting salient features of specific scales. Chen et al. [36]
improved the faster region-based CNN model by using multi-
scale, spatial- and channel-wise attentions for object detection in
remote sensing imagery. For the HSI classification, an attention-
based inception model was built to yield a special attention
pattern in [37], which can adaptively select different kinds of
the spatial information. By utilizing CNN and attention mech-
anism, a band attention convolutional network was proposed
to extract effective spatial-spectral features for HSI classfica-
tion [38]. Mei et al. [39] integrated CNN, ResNet, and attention
mechanism to construct a two-branch spatial-spectral attention
network for joint learning of the spatial-spatial information.
With the help of densely connected networks (DenseNets),
a double-branch multi-attention mechanism network [40] and
a 3-D DenseNet with a spectral-wise attention module [41]
were proposed for HSI classification. In addition, by combining
with the attention mechanism and residual learning, a spatial-
spectral attention-driven feature extraction model was designed
in [42].

To reduce the memory requirements of the CNN-based mod-
els, in [43], the fully connected (FC) layers were compressed
by representing their parameters in a tensor-train (TT) format.
TT decomposition (TTD) [44] is an useful tensor factorization
model with the advantage of being able to scale to an arbitrary
number of dimensions. Inspired by [45], Garipov et al. [46]
applied TTD to the convolution kernels for the design of the
lightweight convolutional layer. Furthermore, the TT-format
representation of a RNN model was completed in [47]. Yang
et al. [48] integrated the TTD into the LSTM for video classi-
fication. Compared with the convolutional layers in the CNN,
more trainable parameters and higher storage requirements are
needed by each ConvLSTM2D layer.

In this paper, a new and effective tensor attention-driven
ConvLSTM neural network (TACLNN) model is proposed for
HSI classification. To reduce the number of the parameters
and memory requirements, a lightweight ConvLSTM2D cell is

developed by using TTD to improve the efficiency of the calcula-
tion, thus builting a spatial-spectral TT-ConvLSTM 2-D neural
network (SSTTCL2DNN). However, it is the reduction of the
number of parameters in each ConvLSTM2D layer that results
in the performance loss of the whole model. Specifically, tensor
representation can not only reduce the data dimensionality, but
also retain the geometrical structure of the data. To recover
the performance loss of SSTTCL2DNN, a learnable tensor
attention residual block (TARB) module is built by combining
tensor representation of HSI data and attention mechanism to
enhance the feature extraction ability. Then, the spatial-spectral
features extracted by the SSTTCL2DNN are improved by the
TARB module, resulting in a new TACLNN model which can
effectively reduce the number of parameters without degrading
the classification performance. The main contributions of our
work are summarized as follows:

1) To reduce the computational complexity and memory
requirements, a lightweight ConvLSTM2D cell is devel-
oped by utilizing TTD. By using it as the fundamental
unit, an SSTTCL2DNN is further constructed, which can
effectively reduce the number of parameters within a very
small range of accuracy degradation.

2) For recovering the performance loss caused by the reduc-
tion of the parameters in the SSTTCL2DNN, an effective
TARB module is proposed to preserve the geometrical
structure of HSI, using a lightweight TACLNN model
to achieve satisfactory classification accuracy with the
addition of two training parameters only.

The rest of this paper is organized as follows. ConvLSTM2D,
TT convolutional layer, and attention mechanism are introduced
in Section II. In Section III, the TACLNN model is described in
detail. A detailed analysis of parameter settings and a quan-
titative evaluation on three public HSI data sets is given in
Section IV, followed by conclusions in Section V.

II. RELATED WORK

A. ConvLSTM2D

A ConvLSTM cell was developed by extending the input-to-
state and state-to-state transitions in LSTM to the 2-D convolu-
tion operation in [21]. For convenience, we call it ConvLSTM2D
cell, whose calculation is performed as follows:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)
ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

C̃t = tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

Ct = ft ◦ Ct−1 + it ◦ C̃t

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)
Ht = ot ◦ tanh(Ct),

(1)

where Ht−1, Ct−1, and Xt are the output and the state of the last
cell and the input of the current cell, respectively. it, ft, and Ht

denote three gate structures, i.e., input, forget, and output gates,
and the corresponding convolution kernels are W·i, W·f , and
W·o, respectively with · representing x, h, and c. In addition,
◦, σ, and * are respectively the Hadamard product, nonlinear
activation function, and convolution operation.
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Fig. 1. Framework of the proposed TACLNN model.

As shown in (1), there are two kinds of weights (ignoringWc·).
Specifically, Wx· is the weight of the input gate with a size of
k × k × C × S, and Wh· is a k × k × S × S convolution filter
of the output gate, where k is the kernel size, and C and S are
the number of the input and output channels, respectively. The
total number of parameters in each ConvLSTM2D cell is:

N1 = 4 k2S(S + C). (2)

Compared with the convolution filters, the number of the bias
parameters is insignificant; hence, the bias vectors are not con-
sidered in the experiments. From (2), there are 4 k2S(S + C)
parameters, resulting in large storage requirements than convo-
lutional layer in the CNN. Therefore, it is necessary to develop
a lightweight ConvLSTM2D cell to achieve higher computation
efficiency and memory savings.

B. Tensor-Train Convolutional Layer

By using TTD, a d-order tensor A ∈ Rl1×l2···×ld can be
decomposed into a set of tensors Gp ∈ Rlp×rp−1×rp . In [43], the
factorization ofA ∈ R(u1·v1)×(u2·v2)···×(ud·vd) can be written as:

A((R1, T1), (R2, T2), . . . , (Rd, Td))

= G′
1[R1, T1]G′

2[R2, T2] · · ·G′
d[Rd, Td], (3)

where G′
p[Rp, Tp] ∈ Rrp−1×rp , Rp = � ep

vp
�, and Tp = ep −

vp� ep
vp
�. lp = up × vp, ep = 1, 2, . . . , lp, and p = 1, 2, . . . , d, in

which lp is the dimension of the mode-p of A.
Taking the convolutional layer as an example, the input tensor

X ∈ Rw×h×C is transformed into the output Y ∈ Rw×h×S by
the kernel K ∈ Rk×k×C×S , where w and h are the width and
height, respectively. To reduce the computational complexity, a
TT-convolutional (TTC) layer was built in [46] by decomposing
the kernel along with the channel dimension with TTD, and the
outputs of the TTC layer is expressed as:

Y(kw, kh, s1, s2, . . . , sd) =

k∑
jw=1

k∑
jh=1

∑
c1,c2,...,cd

X (jw + kw − 1, jh + kh − 1, c1, c2, . . . , cd)·
G′

0[jw, jh]G′
1[c1, s1]G′

2[c2, s2]· · ·G′
d[cd, sd], (4)

where C =
∏d

p=1 Cp, S =
∏d

p=1 Sp, and kw, kh = 1, 2, . . . , k.
G′

p is the TTC − cores, which is the parameters that need to be

trained in this TTC layer. The set {rp}d+1
p=0 is the TTC − ranks,

where r0 and rd+1 are 1.
For convenience, the above calculation can be defined as:

Y = TTCL(K,X). (5)

In this paper, to reduce the memory consumption of the
ConvLSTM2D in (1), a lightweight ConvLSTM2D cell will be
constructed by using TTD, which is called TT-ConvLSTM2D
cell. A more detailed description will be given in Section III-B.

C. Attention Mechanism

Vaswani et al. [49] utilized the following equation to calculate
the outputs of attention mechanism:

Attention(Q, K̃, V ) = softmax(f(Q, K̃))V, (6)

where f(·) means the attention function, and Q, K̃, and V are
the inputs of attention mechanism. softmax(·) is the softmax
function for normalization.

By taking the advantages of the tensor representation and
attention mechanism, a TARB module is designed to enhance
the intrinsic geometrical structure information of deep learning
models, which will be introduced in Section III-C. To the best of
our knowledge, this is the first attempt of constructing a tensor
attention structure for HSI classification purposes.

III. TACLNN

A. Architecture Overview

The framework of the TACLNN model is shown in Fig. 1.
To reduce the number of trainable parameters, a lightweight
TT-ConvLSTM2D cell is presented in Section III-B. The
SSTTCL2DNN model is demonstrated in Section III-C. In Sec-
tion III-D, a novel TARB module is described in detail. Finally,
our TACLNN model can be found in Section III-E.
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Fig. 2. Illustration of the developed TT-ConvLSTM2D Cell.

B. TT-ConvLSTM2D

From (1), there are two different convolution weights, i.e.,
Wx· and Wh·. To reduce the number of the parameters and the
storage requirements, a lightweight TT-ConvLSTM2D cell is
developed by using the TTC layer, as shown in Fig. 2.

Firstly, the input Xt and output Ht−1 in (1) are reshaped
into the (2 + d)-order tensors X t ∈ Rw×h×C1×C2×···×Cd and
Ht−1 ∈ Rw×h×S1×S2×···×Sd , respectively. And then, inspired
by the TTC layer in Section II-B, the decompositions of Wx·
and Wh· corresponding to Xt and Ht−1 are expressed as:

Wx· = G′
0[jw, jh]x·G′

1[c1, s1]x·· · ·G′
d[cd, sd]x·

Wh· = G′
0[jw, jh]h·G′

1[s1, s1]h·· · ·G′
d[sd, sd]h·. (7)

Finally, substituting X t, Ht−1, and (7) into (4), the cor-
responding outputs Yx·

t and Yh·
t−1 ∈ Rw×h×S1×S2×···×Sd are

obtained, which are reshaped into the third-order tensors Y x·
t−1

and Y h·
t−1 ∈ Rw×h×S as the final output of each gate unit.

Based on the above analysis, the whole calculation formulas
of the TT-ConvLSTM2D cell can be written as:

it = σ(TTCL(Wxi, Xt) + TTCL(Whi, Ht−1)

+Wci ◦ Ct−1 + bi)

ft = σ(TTCL(Wxf , Xt) + TTCL(Whf , Ht−1)

+Wcf ◦ Ct−1 + bf )

C̃t = tanh(TTCL(Wxc, Xt) + TTCL(Whc, Ht−1) + bc)

Ct = ft ◦ Ct−1 + it ◦ C̃t

ot = σ(TTCL(Wxo, Xt) + TTCL(Who, Ht−1)

+Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct). (8)

Obviously, the total number of parameters of all convolution
filters in the TT-ConvLSTM2D cell can be obtained as:

N2 = 8 k2r1 + 4

d∑
p=1

sprp+1rp(cp + sp). (9)

Fig. 3. Structure of the proposed TARB module.

Therefore, inspired by (2) and (9), the compression rate of
each ConvLSTM2D cell is described as:

N1

N2
=

k2S(S + C)

2 k2r1 +
∑d

p=1 sprp+1rp(cp + sp)
. (10)

Based on the TT-ConvLSTM2D cell in (8) and by utilizing
it as a basic unit, a lightweight TT-ConvLSTM2D layer is
further built. Similar to an ordinary ConvLSTM2D layer, the
TT-ConvLSTM2D layer can also be used alone or with the CNN
to build feature extraction models for various applications.

C. SSTTCL2DNN

In [22], by decomposing the local window patch into a spectral
sequence as the input of each ConvLSTM2D cell (in band by
band fashion), SSCL2DNN was used for spatial-spectral fea-
ture extraction by modeling the long-range dependencies in the
spectral dimension for HSI classification, whose main backbone
contains two ConvLSTM2D and two pooling layers.

Based on the above analysis, the design of gate structures
in each ConvLSTM2D cell results in a large number of train-
able parameters and high storage requirements. To improve the
computational efficiency of SSCL2DNN, a lightweight spatial-
spectral feature extraction model (namely SSTTCL2DNN) is
built by applying the TT-ConvLSTM2D cell. According to (10),
the number of the parameters in SSTTCL2DNN is effectively
reduced, which is helpful for its practical application.

Although the trainable parameters and the storage require-
ments of SSTTCL2DNN will be effectively reduced, its classifi-
cation accuracy will be inevitably lost. Consequently, to recover
the performance loss of SSTTCL2DNN, a trainable and effective
TARB module is further constructed, whose detailed structure
is given in Section III-D.

D. TARB

To recover the performance loss of SSTTCL2DNN, and in-
spired by the advantages of the tensor representation of HSI data,
a TARB module is developed in this section, whose structure
is shown in Fig. 3. In particular, the tensor locality preserving
projection (TLPP) [50] model is utilized in the TARB model
for the feature extraction and dimensionality reduction, which
can effectively preserve the geometrical structure of HSI data.
Therefore, it is possible for the SSTTCL2DNN to combine ten-
sor representation to obtain better performance and effectively
reduce the number of the parameters.
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Suppose that X ∈ RW×H×D is the original HSI data, where
W , H , and D are the width, height, and the number of the
spectral bands, respectively. Due to the fact that the spatial
information is helpful for HSI classification, the data with size of
s′ × s′ in a local window is set to capture the spatial information
around each pixel x, which results in a 3-D volume expressed
by XT ∈ Rs′×s′×D, used as the input of TARB.

For the TLPP in TARB, given q samples XT1
, . . ., XTq

,
the heat kernel function is first applied to define a similarity
matrix, with which a neighborhood graph is built to describe the
local geometric structure of these samples [50]. Then, for the
sample XTm

, the transformation matrices Up(p = 1, 2, . . . , d)
are calculated by minimizing the following objective function:

min J(U1, . . . , Ud)

= min
U1,...,Ud

∑
m,n

‖XTm
×1 U1 · · · ×d Ud

−XTn
×1 U1 · · · ×d Ud‖2F W̃mn,

s.t.
∑
m

‖XTm
×1 U1 · · · ×d Ud‖2dmm = 1. (11)

where XTm
, XTn

∈ Rl1×l2×···×ld , m,n = 1, 2, . . . , q, and W̃ ∈
Rq×q is the similarity matrix. After that, the optimization prob-
lem of (11) is transformed into a generalized eigenvalue prob-
lem, thus obtaining transformation matrices Up ∈ Rl̃p×lp(l̃p <

lp), where l̃p is the dimension of mode-p after dimension reduc-
tion. Finally, by executing p-mode product ofUp andXTm

along
its all dimensions, the low-dimensional tensor features YTm

are
extracted, where YTm

= XTm
×1 U1 · · · ×p Up · · · ×d Ud, and

×p is the p-mode product.
Therefore, based on the above analysis, as for the input data

XT of the pixel x, its low-dimensional tensor feature FTLPP ∈
Rw×h×K after feature extraction and dimension reduction in
TARB can be learned as follows:

FTLPP = XT ×1 U1 ×2 U2 · · · ×d Ud, (12)

where K denotes the number of the spectral bands, and d in the
TARB module is 3 in the experiments.

Based on the above preprocessing stage, the input XT is
transformed into a tensor representation FTLPP with a size
of w × h×K, which is then reshaped into an unnormalized
attention map α ∈ Rw×h×K×1. It is further normalized by a
softmax function to obtain a tensor attention weight α̃, resulting
in a normalized one. Inspired by the residual learning, the
enhanced feature representation in TARB is written as:

F̂ = F 	 α̃+ F, (13)

where F means the input data or the features extracted by other
models, and 	 is an element-based product operation.

Tensor representation can preserve the geometrical structure
information of HSI data, which is beneficial to HSI classifi-
cation. The TARB module can be utilized to strengthen the
attention devoted to the original feature map from the viewpoint
of geometrical structure, and is flexible to be inserted into any
layer of deep models, resulting in a feature representation that

leads to geometrical structure enhancement. It should be noted
that, to the best of our knowledge, this is the first attempt to
construct a tensor attention structure for HSI classification.

E. TACLNN

Although the efficiency of calculation in SSTTCL2DNN has
been improved, its performance is inevitably degraded. To re-
cover the performance loss caused by the parameter reduction,
a TACLNN model is proposed by combining SSTTCL2DNN
with TARB, whose framework is shown in Fig. 1.

Firstly, for the SSTTCL2DNN, similar with [22], the 3-D data
with a size of XS ∈ Rs×s×K is built from the original HSI data
X , in which s× s is the spatial information extracted from the
HSI data around the pixel x, and K is the number of spectral
bands after dimension reduction through principal component
analysis (PCA). After data preprocessing, XS is decomposed
into τ 2-D components and then converted into a sequence,
i.e., {X1

S , . . . , X
t
S , . . . , X

τ
S}, t ∈ {1, 2, . . . , τ}, where τ is the

dimension time_step in each TT-ConvLSTM2D layer, and τ is
set to K. After the feature extraction by the SSTTCL2DNN,
the spatial-spectral features can be obtained by modeling the
long-term dependencies in the spectral domain and expressed
as FSS ∈ Rw×h×K×C .

To recover the performance loss of SSTTCL2DNN caused by
the parameter reduction, a simple but effective TARB module
is constructed for enhancing its feature representation ability.
As shown in Section III-D, a normalized attention map α̃ is
extracted from input XT of the pixel x, and inspired by (13), the
enhanced spatial-spectral features are given by:

ˆFSS = FSS 	 α̃+ FSS , (14)

where ˆFSS are the enhanced features in our TACLNN model.
Finally, at the top of TACLNN, the spatial-spectral features
ˆFSS are vectorized as a 1-D vector ˆfSS , and the FC layers are

applied to map the feature space to the class label space, followed
by a softmax function to predict the conditional probability dis-

tribution Pc̃ = P (y = c̃| ˆfSS ,Wfc, bfc) =
e(Wfc

ˆ
fSS+bfc)

∑Nc̃
jc=1 e(Wjc

ˆ
fSS+bjc)

of each class c̃, where c̃ ∈ {1, 2, . . . , Nc̃}, and Nc̃ is the number
of classes. Moreover, the cross entropy is utilized as the loss
function, which is described as Loss.

In our TACLNN model, all the weights and biases need to
be learned. To train the whole model, firstly, the 3-D data of
different local windows corresponding to pixel x are built for
SSTTCL2DNN and TARB, i.e., XS and XT . Then, by solving
(11), the projection matrices Up are calculated and, according to
(12), the tensor representationFTLPP is obtained, which further
results in a tensor attention weight α̃. Finally, Loss is optimized
in Nsteps epochs to yield final classification result. Algorithm 1
describes the training method in more details.

It should be noted that the adaptive momentum algorithm is
adopted to optimize the loss function with the learning rate lr.
More detailed parameter settings are given in Section IV.
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Fig. 4. (Left) False-color maps and (Right) ground-truth maps of these three HSI data sets. (a) Indian Pines (bands 20, 40, and 60). (b) Salinas Valley (bands 46,
27, and 10). (c) University of Pavia (bands 47, 27, and 13). (d)-(f) Number of the training samples.

Algorithm 1: Training TACLNN for HSI Classification.
Input: HSI data X;Ground truth Y
Output: Classification map Ω
1: Prepare the 3-D data XS and XT of the pixel x for
SSTTCL2DNN and TARB

2: Parameter setting and weights initialization
3: Solve (11) to obtain the projection matrices Up

4: Obtain the tensor representation FTLPP by
calculating (12) to further obtain the attention weight α̃

5: While step ≤ Nsteps

6: Train the whole classification model by optimizing
the loss function Loss

7: End While
8: Return Classification map Ω

IV. EXPERIMENTAL RESULTS

To quantitatively and qualitatively verify the validity of
our TACLNN, SVM [51], SSLSTMs [28], Bi-CLSTM [29],
SSCL2DNN [22], and SSTTCL2DNN [52] are selected as the
compared algorithms. Three quantitative metrics are applied to
measure their performance, i.e., overall accuracy (OA), average
accuracy (AA), and Kappa coefficient (κ). To eliminate the bias
caused by randomly choosing training samples, the average
values of them after 10 Monte Carlo runs are utilized. All
experiments are conducted on a desktop with an Intel Core
i7-8700 processor and a Nvidia GeForce GTX 1080ti GPU.

A. Experimental Data

To evaluate our TACLNN, three HSI data sets, i.e., In-
dian Pines, Salinas Valley, and University of Pavia, are uti-
lized in the experiments. In particular, the false-color maps,
ground-truth maps, and the training samples are presented
in Fig. 4.

1) Indian Pines: It was collected by the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) sensor in North-
western Indiana, USA. After removing some noisy spectral
bands, 200 bands are used for the final study. Its spatial size
is 145× 145 pixels, and there are 16 different class labels.

2) Salinas Valley: It was acquired by the AVIRIS sensor over
Salinas Valley, California, with a size of 512× 217 pixels, and
contains 16 classes. After removing the water absorption bands
and noise-affected bands, 204 spectral bands are preserved.

3) University of Pavia: It was captured by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor over University
of Pavia, Northern Italy, and has 610 lines and 340 columns and
9 classes. After removing several noise-corrupted bands, 103
spectral bands are retained for analysis.

B. Parameter Settings

Similar to [22], PCA is applied to reduce the computational
complexity of the whole model, where the first K principal
components are retained to extract the spatial-spectral features.

For all compared methods, the parameter settings of SVM,
SSLSTMs, Bi-CLSTM, SSCL2DNN, and SSTTCL2DNN are
obtained according to [51], [28], [29], [22], [52] for quasi-
optimal results. For our TACLNN, some parameters need to be
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Fig. 5. OA (%) of the proposed TACLNN model with different parameters. (a)-(b) Size s× s of the local window. (c)-(d) Number K of the principal components.
(e)-(g) Value of [K̃, t̃] in the developed TARB module. (h) Learning rate lr.

TABLE I
SENSITIVITY ANALYSIS UNDER DIFFERENT VALUE OF M

tuned, i.e., the spatial sizes (s× s and s′ × s′), the number (K)
of principal components, the kernel size (k × k), the number
(M ) of feature maps, and the value of TTC − rank in each
TT-ConvLSTM2D layer, the values of K̃ and t̃ in the TARB
module, and the learning rate lr. First, K is fixed to 10, and lr
is set to 0.001 from epochs 1 to 2000. M is fixed to {32, 64}. K̃
and t̃ are set to 5 and 0.2, respectively, and TTC − rank is 8.
Then, s is yielded from {9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29}
(the corresponding s′ is from {3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 9}) for
the Indian Pines and University of Pavia data sets while from
{9, 11, 13, 15, 17, 19, 21, 23, 25, 27} for the Salinas Valley data
set due to memory problems. k is from {3, 4, 5}. Experimental
results for analyzing the influence of the different values of s on
the classification performance can be found in Fig. 5(a)-(b). For
these three HSI data sets, the optimal size of the local window
is 27× 27, 25× 25, and 27× 27, respectively.

Then, regarding the value of K, the optimal K is obtained
from {5, 10, 15, 20} for the Indian Pines and University of Pavia
data sets, while from {5, 10, 15} for the Salinas Valley data set
due to memory limitation. The value of OA of TACLNN as K
varies is given in Fig. 5(c)-(d). The quasi-optimal value of K is
set to 10 for these three HSI data sets.

Furthermore, the classification accuracy on different values
of M is analyzed in Table I. The optimal number of the feature
maps for these three HSI data sets is fixed to {32, 64}.

The performance of TACLNN on different values of TTC −
rank is further analyzed, and TTC − rank is selected from
{4, 6, 8, 10, 12}. From Table II, TACLNN yields optimal per-
formance when TTC − rank is 8 for three HSI data sets.

TABLE II
SENSITIVITY ANALYSIS UNDER DIFFERENT VALUE OF TTC − rank

TABLE III
PARAMETER SETTINGS FOR THE INDIAN PINES DATA SET

TABLE IV
NUMBER OF THE PARAMETERS AND COMPRESSION RATE IN ALL

CONVLSTM2D LAYERS WITH TTC − rank = 8

For the TARB module, there are two key parameters, i.e., K̃
and t̃, and fivefold cross-validation is utilized to tune them from
the range of {1, 5, 10, 15} and {0.2, 0.4, 0.6, 0.8}, respectively.
The experiments for studying their effects are given in Fig. 5(e)-
(g). The quasi-optimal value of [K̃, t̃] for three HSI data sets is
respectively [5, 0.2], [10, 0.8], and [5, 0.2].
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT APPROACHES FOR THE INDIAN PINES DATA SET

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT APPROACHES FOR THE SALINAS VALLEY DATA SET

Finally, the optimal learning rate lr is searched from
{0.0001, 0.0005, 0.001, 0.005}. From Fig. 5(h), the optimal
value of lr for these three HSI data sets is 0.001.

The detailed parameter settings of TACLNN for the Indian
Pines data set are reported in Table III. Particularly, for the
Salinas Valley data set, the kernel sizes of two TT-ConvLSTM2D
layers are respectively set to 4× 4 and 5× 5, while 4× 4 and
4× 4 for the University of Pavia data set, and the window sizes
of the input data for these two data sets are obtained from
Fig. 5(a)-(b). Other parameter settings for these two HSI data
sets are the same as those in Table III.

C. Classification Performance

To verify the effectiveness of our TACLNN model, we ran-
domly select 10% of samples to build the training set for the
Indian Pines data set, while 1% for the other two HSI data sets.
The rest of the samples are used for testing.

According to Tables IV–VII, TACLNN can recover the perfor-
mance loss caused by the reduction of the number of the param-
eters in each ConvLSTM2D layer to obtain better classification
performance. This also illustrates that TACLNN presents better

feature representation ability for more effective spatial-spectral
features. On the one hand, similar to the ConvLSTM2D layer,
the special design of the gate structure makes it possible for the
TT-ConvLSTM2D layer to better learn the spatial information
and fuse the spatial-spectral information than the LSTM-based
models. On the other hand, the way of modeling the long-range
dependencies in the spectral field in the ConvLSTM2D-based
models is more effective than simply cascading all the outputs
in Bi-CLSTM, as verified in [22].

To make a fair comparison of SSCL2DNN, SSTTCL2DNN,
and TACLNN, additional experiments for analyzing the number
of parameters and the compression rate in all ConvLSTM2D
layers are conducted, and the results are reported in Table IV.
Compared with SSCL2DNN, SSTTCL2DNN leads to a small
range of accuracy degradation after reducing the number of the
parameters, achieving up to 5.69 ×, 12.71 ×, and 13.17 × com-
pression with 0.70%, 0.65%, and 2.29% accuracy degradations
for three HSI data sets, respectively, while to 2.84 ×, 12.60
×, and 6.66 × compression with 0.22%, 1.72%, and 1.54%
accuracy improvements for TACLNN. It is evident that, with
the help of TARB, TACLNN can recover the performance loss
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TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT APPROACHES FOR THE UNIVERSITY OF PAVIA DATA SET

Fig. 6. Classification maps for the Indian Pines data set. (a) Ground-truth map. (b) SVM (91.20% ± 2.01%). (c) SSLSTMs (93.69% ± 0.72%). (d) Bi-CLSTM
(95.62% ± 0.26%). (e) SSCL2DNN (98.03% ± 0.29%). (f) SSTTCL2DNN (97.33% ± 0.46%). (g) TACLNN (98.25% ± 0.43%).

Fig. 7. Classification maps for the Salinas Valley data set. (a) Ground-truth map. (b) SVM (82.39% ± 1.21%). (c) SSLSTMs (83.10% ± 0.40%). (d) Bi-CLSTM
(95.72% ± 0.70%). (e) SSCL2DNN (96.30% ± 1.97%). (f) SSTTCL2DNN (95.65% ± 0.32%). (g) TACLNN (98.02% ± 0.09%).

caused by the reduction of parameters in SSTTCL2DNN on
the premise of adding only two parameters to be trained, and
yield better classification performance than SSCL2DNN, which
verifies the advantages of our TACLNN model. More detailed
experimental results are reported in Tables V–VII.

From the classification maps in Figs. 6 –8, similar conclusions
can also be drawn. It can be seen that the maps generated by
TACLNN are improved for these three HSI data sets. Specifi-
cally, the maps contain less mislabeled pixels and the boundaries
of different classes are better delineated, especially for class 3,
class 15, and class 16 in Fig. 5, class 8, class 15, and class 16 in
Fig. 6, and class 5 and class 6 in Fig. 7, which also demonstrates
the superiority of our TACLNN model.

As is known to all, the cost of generating labeled samples
is greatly high for HSI classification. To further investigate the

performance of TACLNN with limited training samples, addi-
tional experiments are conducted. Specifically, 10, 20, 30, and
40 samples of each class are randomly selected from these three
HSI data sets, and for class 7 and class 9 in the Indian Pines data
set, the number of the samples is fixed to 10. Based on the above
settings, the OA curves of all models are shown in Fig. 9, where
even in the case of small training samples, TACLNN can also
achieve better classification performance than other algorithms.
Furthermore, compared with other three ConvLSTM2D-based
methods, the classification accuracy of TACLNN can be effec-
tively improved by the TARB module. TARB can effectively
enhance its feature extraction ability and the intrinsic structure
of the extracted spatial-spectral features, which is the main
reason why the performance loss of SSTTCL2DNN can be
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Fig. 8. Classification maps for the University of Pavia data set. (a) Ground-truth map. (b) SVM (65.67% ± 1.83%). (c) SSLSTMs (73.90% ± 0.61%). (d)
Bi-CLSTM (85.22% ± 0.75%). (e) SSCL2DNN (91.47% ± 1.02%). (f) SSTTCL2DNN (89.18% ± 0.66%). (g) TACLNN (93.01% ± 0.70%).

Fig. 9. OA (%) of all classification models under different number of the training samples. (a) Indian Pines, (b) Salinas Valley, (c) University of Pavia.

effectively recovered. This further confirms the effectiveness of
the proposed TACLNN model.

D. Visualization of Tensor Attention Module

To compensate for the performance loss caused by the re-
duction of parameters in SSTTCL2DNN, a TARB module is
designed by combining tensor representation of HSI data and
attention mechanism. However, considering that the extracted
tensor attention weight in TARB presents a fourth-order tensor,
it is difficult to give its comprehensible visualization directly.

Therefore, we first extract a channel map from the outputs
of our TARB module, leading to a third-order tensor attention
map. Then, we show some attended spatial attention maps along
with different spectral dimensions to see whether they highlight
clear semantic areas. Fig. 10 visualizes some examples of the
tensor attention maps from TARB for three HSI data sets, where
the spectral dimension is 10. Specifically, Fig. 10(a), (c) and
(e) show some examples of the input XS in SSTTCL2DNN,
while Fig. 10(b), (d), and (f) illustrate the corresponding ten-
sor attention maps in TARB. From the perspective of each
spectral dimension, the spatial attention can capture relatively
clear semantic similarity and the boundary information can be
described clearly, while the response of the specific semantics
after applying the spectral attention is noticeable in the spatial
dimension. This means that TARB can highlight the response of
specific semantic area and capture its boundary information to

Fig. 10. Visualization results of the TARB module on these three HSI data
sets. (a)-(b) Indian Pines, (c)-(d) Salinas Valley, (e)-(f) University of Pavia.

enhance the ability of modeling the spatial-spectral features of
TACLNN for HSI classification.

V. CONCLUSION

In this paper, a new TACLNN model has been developed for
the feature extraction and classification of HSIs. Particularly, a
lightweight TT-ConvLSTM2D cell is constructed by applying
TTD, with which an SSTTCL2DNN model is further developed.
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To recover the performance loss caused by parameter reduc-
tion of each TT-ConvLSTM2D layer in the SSTTCL2DNN, a
trainable TARB module is designed by combining the tensor
representation of HSI data and attention mechanism, which can
enhance the geometry structure information. Extensive experi-
ments have been conducted on three commonly used HSI data
sets, indicating that our TACLNN model can not only effec-
tively reduce the amount of parameters to be trained, but also
improve the feature extraction ability to yield more satisfactory
classification performance.
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