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Abstract— Recently, many convolutional neural network
(CNN) methods have been designed for hyperspectral image
(HSI) classification since CNNs are able to produce good
representations of data, which greatly benefits from a huge
number of parameters. However, solving such a high-dimensional
optimization problem often requires a large number of training
samples in order to avoid overfitting. In addition, it is a typical
nonconvex problem affected by many local minima and flat
regions. To address these problems, in this article, we introduce
the naive Gabor networks or Gabor-Nets that, for the first
time in the literature, design and learn CNN kernels strictly
in the form of Gabor filters, aiming to reduce the number of
involved parameters and constrain the solution space and, hence,
improve the performances of CNNs. Specifically, we develop an
innovative phase-induced Gabor kernel, which is trickily designed
to perform the Gabor feature learning via a linear combination
of local low-frequency and high-frequency components of data
controlled by the kernel phase. With the phase-induced Gabor
kernel, the proposed Gabor-Nets gains the ability to automatically
adapt to the local harmonic characteristics of the HSI data and,
thus, yields more representative harmonic features. Also, this
kernel can fulfill the traditional complex-valued Gabor filtering in
a real-valued manner, hence making Gabor-Nets easily perform
in a usual CNN thread. We evaluated our newly developed Gabor-
Nets on three well-known HSIs, suggesting that our proposed
Gabor-Nets can significantly improve the performance of CNNs,
particularly with a small training set.
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I. INTRODUCTION

OVER the past two decades, hyperspectral imaging has
witnessed a surge of interest for Earth observations due

to its capability to detect subtle spectral information using
hundreds of continuous and narrow bands, thus making it
promising for some applications, such as classification [1], [2].
In the early stages of HSI classification, most techniques
were devoted to analyzing the data exclusively in the spectral
domain, disregarding the rich spatial–contextual information
contained in the scene [3]. Then, many approaches were devel-
oped to extract spectral–spatial features prior to classification
to overcome this limitation, such as morphological profiles
(MPs) [4] and spatial-based filtering techniques [5], [6], which
generally adopts handcrafted features following by a classifier
with predefined hyperparameters.

Recently, inspired by the great success of deep learning
methods [7], [8], CNNs have emerged as a powerful tool
for spectral and spatial HSI classifications [9], [10]. Different
from traditional methods, CNNs jointly learn the information
for feature extraction and classification with a hierarchy of
convolutions in a data-driven context, which is capable to
capture features in different levels and generate more robust
and expressive feature representations than the handcrafted
ones. Furthermore, the parameters can be optimized in accor-
dance with data characteristics, leading to more effective
models. However, CNN methods often require a large number
of training samples in order to avoid overfitting due to the
huge number of free parameters involved. This is particularly
challenging in the context of HSI classification, where manual
annotation of samples is difficult, expensive, and time con-
suming. Moreover, solving the kernels of a CNN is a typical
nonconvex problem, affected by many local minima and flat
regions [11], which is usually addressed with a local search
algorithm, such as the gradient-descend algorithm under a
random initialization scheme, making the kernels very likely
converge to a bad/spurious local minimum [12].

To tackle these issues, a recent trend is to embed a priori
knowledge into deep methods to refine model architectures.
For example, Shamir [13] and Tian [14] showed that the
adoption of the Gaussian assumptions on the input distrib-
ution can assist the successful training of neural networks.
Chen et al. [15] overcame the contradiction between a small
training size and a large parameter space through the inte-
gration of Bayesian modeling into neural networks. These
previous works reveal that a priori knowledge exhibits good
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Fig. 1. Filters extracted from the first convolutional layer of a well-trained
CNN using 100 training samples per class for a HSI collected over Pavia
University, Italy.

potential in improving the reliability and generalization of
deep models. More specifically, for CNNs, some attempts
have been made to reinforce model robustness via redesigning
convolutional kernels using certain a priori knowledge. For
instance, circular harmonics are employed to equip CNNs
with both translation and rotation equivariant kernels [16].
However, the construction of such rotation-equivariant kernels
is somewhat complicated, where each filter is a combination of
a set of filter bases. Besides, the complex-valued convolution
operations require a new CNN thread and increase the calcu-
lation burden in both the forward and backward propagations
when using the same number of kernels.

Apart from circular harmonics, the Gabor filters offer
another type of a priori knowledge that can be used to
reinforce convolutional kernels of CNNs. The Gabor filters are
able to achieve optimal joint time–frequency resolution from a
signal processing perspective [17], thus being appropriate for
low- and middle-level feature extractions (which are exactly
the functions of the bottom layers of CNNs). Furthermore,
researches have revealed that the shape of the Gabor filters is
similar to that of receptive fields of simple cells in the primary
visual cortex [18]–[21], which means that using the Gabor fil-
ters to extract low- and middle-level features can be associated
with a biological interpretation. In fact, as illustrated in Fig. 1,
many filters in CNNs (especially those in the first several
layers) look very similar to the Gabor filters. Inspired by these
aspects, some attempts have been made to utilize the Gabor
a priori knowledge to reinforce CNN kernels, i.e., by replacing
some regular kernels with the fixed Gabor filters to reduce the
number of parameters [22]–[24], initializing regular kernels
in the form of the Gabor filters [22], [25], and modulating
regular kernels with the predefined Gabor filters [26]. Their
good performance indicates a promising potential of the Gabor
filters in promoting the capacity of CNN models. However,
traditional Gabor filtering is complex-valued, while CNNs are
usually fulfilled with real-valued convolutions. Therefore, most
Gabor-related CNNs only utilize the real parts of the Gabor
filters to form CNNs, which means that they only collect local
low-frequency information in the data while disregarding (pos-
sibly useful) high-frequency information. To mitigate these
issues, in analogy with some shallow-learning-based Gabor
approaches [5], Jiang and Su [22] used the direct concate-
nation of the real and imaginary parts in CNNs. However,
this approach is unable to tune the relationship between
these two parts when extracting the Gabor features. Most
importantly, all these Gabor-related methods still manipulate
handcrafted Gabor filters, whose parameters are empirically
set and remain unchanged during the CNN learning process.
That is, the Gabor computation (although involved in these
existing Gabor-related CNN models) does not play a signifi-
cant role and, hence, is independent of the CNN learning. The
remaining question is how to conveniently and jointly utilize
the Gabor representation and the learning ability of CNNs so
as to generate more effective features in a data-driven fashion.

In this article, we introduce a new concept of the naive
Gabor Networks (Gabor-Nets) for HSI classification, where
naive refers to the fact that we, straightforwardly, replace
regular convolutional kernels of CNNs with the Gabor kernels,
which is based on the following intuitions.

1) First, the Gabor filtering can be fulfilled with a linear
convolution [27], which implies that the Gabor filtering
can be naturally extended to implement the basic con-
volution operations in CNNs.

2) Second, transforming the problem of solving CNN
kernels to that of finding the optimal parameters of
the Gabor kernels tends to reduce the number of free
parameters. If the Gabor kernels, instead of regular CNN
kernels, are used in a CNN, then the parameters to solve
in each kernel will be transformed from the CNN kernel
elements to the Gabor parameters, such as the frequency
magnitude, frequency direction, and scale.

3) Although usually CNNs require real-valued computa-
tions (while the Gabor filtering involves complex-valued
computations related to the real and imaginary parts),
there is a possibility to design flexible Gabor repre-
sentations computed in a real-valued fashion without
missing any information on the real and imaginary parts.
This is because the local cosine harmonic and the local
sinusoidal harmonic in a Gabor filter can be connected
with each other by a phase offset term.

It is noteworthy that remotely sensed images are mainly com-
posed of a series of geometrical and morphological features,
i.e., low- and middle-level features. Therefore, our networks
(with a few Gabor convolutional layers) are expected to be able
to extract representative features for HSI processing. To the
best of our knowledge, this is the first attempt in the literature
to both design and learn CNN convolutions strictly in the form
of the Gabor filters.

More specifically, the innovative contributions of our newly
developed Gabor-Nets can be summarized as follows.

1) Gabor-Nets operate in a twofold fashion. On the one
hand, using the Gabor filtering to perform convolutions
in CNNs tends to reduce the number of the parameters
to learn, thus requiring a smaller training set and achiev-
ing faster convergence during the optimization. On the
other hand, the free parameters of Gabor filters can be
automatically determined by the forward and backward
propagations of CNNs.

2) Gabor-Nets are built on novel phase-induced Gabor
kernels. The Gabor kernels, induced with a kernel phase
term, exhibit two important properties. First, they have
the potential to adaptively collect both the local cosine
and the local sinusoidal harmonic characteristics of the
data. Second, the kernels can be used for real-valued
convolutions. Thus, Gabor-Nets implemented with the
new kernels are able to perform similar to CNNs while
generating more representative features.

3) Gabor-Nets adopt a well-designed initialization scheme.
Specifically, the parameters used to construct usually
used handcrafted Gabor filter banks are initialized based
on the Gabor a priori knowledge, while the kernel
phases utilize a random initialization in order to increase
the diversity of kernels. Such an initialization scheme
can not only make Gabor-Nets inherit the advantages of
traditional Gabor filters but also equip Gabor-Nets with
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some superior properties, such as the ability against the
gradient vanishing problem often arising in CNNs.

The remaining of this article is organized as follows.
Section II gives the general formulation of Gabor harmonics
and simultaneously reviews some related works on Gabor
filtering. Section III introduces the proposed Gabor-Nets con-
structed with an innovative phase-induced Gabor kernel in
detail. Section IV describes the experimental validation using
three real hyperspectral data sets. Finally, Section V concludes
this article with some remarks and hints at plausible future
research lines.

II. RELATED WORK

Let (x, y) denote the space domain of an image. A general
2-D Gabor filter can be mathematically formulated by a
Gaussian envelope modulated sinusoid harmonic, as follows:

G(x, y) = 1

2πρxρy
exp

{
−1

2

(
x2

r

ρ 2
x

+ y2
r

ρ 2
y

)}
× exp { j (xωx + yωy)} (1)

where ρx and ρy are the scales along the two spatial axes of the
Gaussian envelope, xr = x cos φ+y sin φ and yr = −x sin φ+
y cos φ are the rotated coordinates of x and y with a given
angle φ, ωx = |ω| cos θ and ωy = |ω| sin θ are the projections
of a given angular frequency ω onto x- and y-directions,
respectively, θ is the angle between ω and the x-direction,
|ω| = (ω2

x + ω2
y)

(1/2) is the magnitude of ω (hereinafter,
replaced by ω), and j is the imaginary unit. To simplify
the gradient calculation of θ , we utilize the rotation-invariant
Gaussian envelope under unrotated coordinates with φ = 0
and ρx = ρy = ρ . With Euler’s relation, let M = xωx + yωy,
we can rewrite the 2-D Gabor filter in the following complex
form:

G(x, y) = K × exp { j M}
= K cos M + j K sin M

= �{G(x, y)} + j�{G(x, y)} (2)

where K = (1/2πρ 2) exp {−(x2 + y2/2ρ 2)} is the rotation-
invariant Gaussian envelope. Specifically, the local cosine har-
monic �{G(x, y)} is associated with the local low-frequency
component in the image, and the local sinusoidal harmonic
�{G(x, y)} is connected to the local high-frequency compo-
nent [5], thus enabling Gabor filtering to access the local
harmonic characteristics of the data.

In the following, we review some existing works relevant
to the Gabor filtering.

A. Traditional Handcrafted Gabor Filters

From a signal processing perspective, the Gabor harmonics
maximize joint time/frequency or space/frequency resolutions
[17], making them ideal for computer vision tasks. Hand-
crafted Gabor filters have achieved a great success in many
applications, such as texture classification [28], face and facial
expression recognition [29], palm print recognition [30], edge
detection [31], and several others [32]. Regarding HSI data
interpretation, Bau et al. [33] used the real part of 3-D
Gabor filters to extract the energy features of regions for HSI
classification, suggesting the effectiveness of Gabor filtering in

feature extraction. He et al. [5] proposed a novel discriminative
low-rank Gabor filtering (DLRGF) method able to generate
highly discriminative spectral–spatial features with high com-
putational efficiency, thus greatly improving the performance
of Gabor filtering on HSIs. Jia et al. [6] also achieved good
classification results using the phase of complex-valued Gabor
features. These handcrafted Gabor features can be regarded
as single-layer features extracted by Gabor filter banks. The
involved parameters are empirically set following a “search
strategy,” where the orientations and spatial frequencies obey
certain uniform distributions, aimed to cover as many optimal
parameters as possible.

B. Gabor-Related CNNs

Recently, some attempts have been made to incorporate
Gabor harmonics into CNNs, in order to reduce the number
of parameters and equip CNNs with orientation and frequency
selectivity. The existing Gabor-related CNNs can be roughly
categorized into two groups, i.e., those using Gabor features
and those using Gabor filters. The former category uses Gabor
features only as of the inputs of networks, while in the latter
category, predefined Gabor filters with fixed parameters are
used in some convolutional layers.

Researches show that using handcrafted Gabor features
could help mitigate the negative effects introduced by a lack of
training samples on CNNs. For example, Hosseini et al. [34]
utilized additional Gabor features as inputs for CNN-based
age and gender classification, and obtained better results.
Yao et al. [35] achieved a higher recognition rate by using
Gabor features to pretrain CNNs before fine-tuning. Similar
works can be found in [36] and [37]. In the field of remote
sensing, Chen et al. [38] fed the Gabor features extracted
on the first several principal components into CNNs for HSI
classification. Shi et al. [39] complemented CNN features
with Gabor features in ship classification. Their experimental
results indicate that Gabor features are able to improve the
performance of CNNs.

Another trend is to manipulate certain layers or kernels
of CNNs with Gabor filters. For example, Jiang et al. [22]
replaced the kernels in the first layer of a CNN with a
bank of Gabor filters under predefined orientations and spa-
tial frequencies. These first-layer Gabor filters can be fixed,
as explained in [23], or be tuned at each kernel element,
such as in [25], where, in fact, Gabor filters were used
for initialization purposes. Moreover, to reduce the training
complexity, Sarwar et al. [24] replaced some kernels in the
intermediate layers with fixed Gabor filters and yielded better
results. More recently, Luan et al. [26] utilized Gabor filters
to modulate regular convolutional kernels, thus making the
network capacity to capture more robust features with regards
to orientation and scale changes. However, Gabor convolu-
tional networks (GCNs) still learned the regular convolutional
kernels, i.e., GCNs, in fact, utilized Gabor-like kernels.

These Gabor-related works, either using Gabor fea-
tures or using Gabor filters, manipulate the handcrafted Gabor
filters without Gabor feature learning, which means that their
parameters are empirically set (and remain unchanged) during
the learning process. That is, in these existing Gabor-related
CNNs, the Gabor computation does not play any relevant
role in CNN learning. In contrast, as illustrated in Table I,
our proposed Gabor-Nets directly use Gabor kernels with free
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TABLE I

COMPARISON BETWEEN THE GABOR-BASED CNNS AND THE PROPOSED GABOR-NETS

parameters as CNN kernels and automatically determine the
Gabor parameters with forward and backward propagations of
CNNs in a data-driven fashion, thus being able to not only
use the Gabor a priori knowledge but also to fulfill Gabor
feature learning, therefore being adaptive to specific data sets
and able to reduce the human supervision.

III. PROPOSED METHOD

In this section, we first introduce an innovative phase-
induced Gabor kernel, followed by a discussion on its superior
frequency properties. Then, we describe the proposed Gabor-
Nets in detail.

A. Phase-Induced Gabor

The real and imaginary parts of commonly adopted Gabor
filters are associated with the local low- and high-frequency
information in the data, respectively [5]. Some Gabor methods
use only the real part to extract features, which obviously
discards the possibility of exploiting local high-frequency
information. In order to integrate the two components, other
methods utilize the amplitude feature [5]

�G(x, y)� = √
�2{G(x, y)} + �2{G(x, y)} (3)

the phase feature [6]

�G(x, y) = �{G(x, y)}
�{G(x, y)} (4)

or the direct concatenation of the real and the imaginary
parts [22]. The latter case, though considering the real and
the imaginary parts simultaneously (and, hence, synthesizing
both the low- and high-frequency information), is under a
formulation, where there is no parameter able to tune their
relationship.

In addition, as aforementioned, traditional Gabor filtering is
connected to a complex-valued computation, whereas the stan-
dard CNNs are based on real-valued computations. Therefore,
when applying Gabor kernels to CNNs, this difference has to
be handled carefully.

In the following, we design an innovative phase-induced
Gabor filter to deal with these problems. Let P denote
the phase offset of the sinusoidal harmonic. With P added,
the usually used 2-D Gabor filtering formulated in (2) becomes

GP(x, y) = K × exp { j (M + P)}
= K cos (M + P)+ j K sin (M + P)

= �{GP(x, y)} + j�{GP(x, y)} (5)

where we find

K sin(M + P) = K cos
(

M +
(

P − π

2

))
(6)

that is

�{GP(x, y)} = �{
G(

P− π
2

)(x, y)
}
. (7)

Fig. 2. Real and imaginary parts of complex-valued Gabor filters using
θ = π/4, ω = π/100, and ρ = 30, where the imaginary part with a certain
phase offset P is just the corresponding real one with (P − π/2).

As illustrated in (7) and Fig. 2, there is a one-to-one corre-
spondence in terms of P between the real and the imaginary
parts of GP(x, y), i.e., the imaginary part with P is the same
as its real counterpart with a phase offset of (P−π/2). Based
on this observation, we develop a new Gabor filtering to serve
as Gabor kernels in CNNs as follows:

G(x, y) = K cos (M + P). (8)

It can be observed that the Gabor filters with P = 0 and
P = −(π/2) are exactly the real and the imaginary parts of
the traditional Gabor filters in (2), i.e., the low- and the high-
frequency components, respectively. This indicates that, with
P added, the Gabor filtering in (8), though only formulated
with the cosine harmonic, can be equipped with different
frequency properties as P varies. Thus, we name this newly
developed Gabor filtering as the phase-induced Gabor filtering.
Obviously, this new Gabor filtering is fulfilled with a real-
valued convolution, which means that if we utilize such Gabor
filters as Gabor kernels of a CNN, the traditional complex-
valued Gabor computation can be avoided, hence allowing us
to directly use Gabor kernels in a usual CNN thread. In this
article, we refer to P as the kernel phase of Gabor kernels.

For clarity, hereinafter, we utilize G�(x, y) to represent the
Gabor filters without a phase offset term in (1)–(4), with
their real and the imaginary parts denoted as �{G�(x, y)} and
�{G�(x, y)}, respectively.

B. Adaptive Frequency Response Property

To obtain a deeper inspection of our innovative phase-
induced Gabor kernel, we decompose (8) using the trigono-
metric formula as follows:

G(x, y) = cos P · K cos M − sin P · K sin M

= cos P · �{G�(x, y)} − sin P · �{G�(x, y)}. (9)

As can be observed, G(x, y) is actually a linear combination
of �{G�(x, y)} and �{G�(x, y)} in (2), which involves the
weights cos P and sin P controlled by the kernel phase P .
Utilizing the forward and backward propagations of CNNs,
the free parameter P can be tuned following the data. Recall
that �{G�(x, y)} and �{G�(x, y)} are associated with the local
low- and high-frequency components, respectively [5]. Thus,
by involving the kernel phase P , we can develop the CNN
constructed by Gabor kernels, which is able to adaptively
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process both the low- and high-frequency characteristics of
the data.

Reconsidering the decomposition of (8), it can be found
that the cosine harmonic is formed by the coupling of x
and y. If we decouple x and y via the trigonometric formula
and separate the Gaussian envelope K along the x- and
y-directions, respectively, (8) turns to1

G = g(x)
c,p · g(y)

c − g(x)
s,p · g(y)

s (10)

where

g(x)
c,p =

1√
2πρ

exp

(
− x2

2ρ 2

)
cos (xωx + P) (11)

g(y)
c =

1√
2πρ

exp

(
− y2

2ρ 2

)
cos (yωy) (12)

g(x)
s,p =

1√
2πρ

exp

(
− x2

2ρ 2

)
sin (xωx + P) (13)

and

g(y)
s =

1√
2πρ

exp

(
− y2

2ρ 2

)
sin (yωy). (14)

As proven in [5], g(y)
c and g(y)

s , without the kernel phase
P , are low-frequency pass and low-frequency resistant filters,
respectively. Regarding the other two components, i.e., g(x)

c,p

and g(x)
s,p, given ω0 of ωx , their mathematical representations

in the frequency domain are calculated as follows:

ĝc,p(ω) = 1

2
(A + B) cos P + 1

2
j (A− B) sin P (15)

and

ĝs,p(ω) = 1

2
(A + B) sin P − 1

2
j (A− B) cos P (16)

where A = exp (−(ρ 2(ω − ω0)
2/2)) and B =

exp (−(ρ 2(ω + ω0)
2/2)). Then, their corresponding squared

magnitudes of frequency can be obtained as follows:

|̂gc,p(ω)|2 = 1

4
exp (−ρ 2(ω − ω0)

2)+ 1

4
exp (−ρ 2(ω + ω0)

2)

+ 1

2
cos (2P) exp

(− ρ 2
(
ω2 + ω2

0

))
(17)

|̂gs,p(ω)|2 = 1

4
exp (−ρ 2(ω − ω0)

2)+ 1

4
exp (−ρ 2(ω + ω0)

2)

− 1

2
cos (2P) exp

(− ρ 2
(
ω2 + ω2

0

))
. (18)

If we set ω in (17) and (18) to be zero, we have

|̂gc,p(0)|2 = 1

2
[1+ cos(2P)] exp

(−ρ 2ω2
0

)
(19)

|̂gs,p(0)|2 = 1

2
[1− cos(2P)] exp

(−ρ 2ω2
0

)
. (20)

As shown in (19) and (20), when cos(2P) is approaching
−1, i.e., P is approaching π/2, |̂gc,p(0)|2 and |̂gs,p(0)|2 are
decreasing to and increasing away from 0, respectively (which
implies that the low-frequency resistance of g(x)

c,p is being
enforced, while g(x)

s,p behaves more like a low-pass filter). The
situation is opposite when cos(2P) is approaching 1, i.e., P
is approaching 0. Fig. 3 shows the appearance of the squared
magnitudes in the frequency domain with varying values of P .
Clearly, the frequency response characteristics of g(x)

c,p and g(x)
s,p

significantly change as P varies.

1It is identical to allocate the phase offset P with x or y.

Fig. 3. Squared frequency magnitudes of Gaussian enveloped (a) cosine and
(b) sinusoidal harmonics with varying values of P .

For comparison, we employ the same strategy to decompose
(2) as follows:

�{G�(x, y)} = g(x)
c ·g(y)

c − g(x)
s ·g(y)

s (21)

�{G�(x, y)} = g(x)
s ·g(y)

c + g(x)
c ·g(y)

s (22)

where

g(x)
c =

1√
2πρ

exp

(
− x2

2ρ 2

)
cos (xωx) (23)

g(x)
s =

1√
2πρ

exp

(
− x2

2ρ 2

)
sin (xωx). (24)

It can be observed that (2) is composed of a series of compo-
nents that all have an explicit frequency nature. Accordingly,
if we utilize the Gabor filtering without P in (2) as Gabor ker-
nels, the fundamental properties of kernels, i.e., the frequency
response characteristics, can hardly be changed though other
parameters are adaptively tuned in the learning process.

To conclude the above-mentioned two parts, the roles of the
kernel phase P , which is crucial in our phase-induced Gabor
kernel and, therefore, the newly developed Gabor-Nets, can be
summarized as follows.

1) The kernel phase P endows Gabor kernels with the
ability to adaptively collect both the local cosine and
the local sinusoidal harmonic characteristics of the data,
via adjusting their linear combination.

2) With the kernel phase P , the traditional complex-
valued Gabor kernel can be fulfilled in a real-valued
manner, therefore making it possible to directly (and
conveniently) utilize our phase-induced Gabor kernel to
construct a real-valued CNN.

C. Gabor-Nets

The proposed Gabor-Nets directly use phase-induced Gabor
kernels to fulfill CNN convolutions. Then, the parameters to
solve in each convolutional kernel are transformed from the
kernel elements per se to the Gabor parameters of a phase-
induced Gabor kernel: {θ, ω, ρ, P}, i.e., the angle between the
angular frequency and the x-direction θ , the magnitude of the
angular frequency ω, the scale ρ , and the kernel phase P .
Let k denote the kernel size. A phase-induced Gabor kernel
has only four parameters to learn no matter how k varies,
whereas a regular kernel has k2 elements to solve. In the
situation with the smallest kernel size (the 1×1 kernels are not
considered in this work), i.e., when k = 3, the numbers of free
parameters of a Gabor kernel and a regular kernel are 4 and
9, respectively. With the increase of k, the difference between
those parameter numbers increases. For simplicity, we utilize
G in place of G(x, y), and {θ0, ω0, ρ0, P0} to represent the
initializations of corresponding Gabor parameters hereinafter.
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Fig. 4. Forward process of one convolutional layer in Gabor-Nets, with the number of input features set to Ni = 3 and the kernel size set to k = 5. The
kernels are constructed using four θ0’s and two ω0’s, i.e., Nt = 4 and Nm = 2, where the ones marked by circles with the same color and the same size are
initialized with the same θ0 and ω0, respectively. Therefore, there are eight output features in total, i.e., N0 = 4× 2 = 8. Furthermore, ρ ’s are all initialized
with k/8 = 5/8, and P’s are randomly initialized within the range [0, 2π).

As illustrated in Fig. 4, the number of output features in
the lth convolutional layer of Gabor-Nets is determined as
No = Nt × Nm , where Nt and Nm are the predefined numbers
of θ0’s and ω0’s, respectively. Then, with Ni input features,
the kernels in the lth layer are defined as

G(l) = {
G(l)

1 , G(l)
2 , . . . , G(l)

No

}
(25)

where G(l)
o = {G(l)

o,1, . . . , G(l)
o,Ni
}, o = 1, 2, . . . , No is the oth

kernel, i.e., a set of Ni Gabor filters corresponding to Ni

input features used to generate the oth output feature. Within
a kernel, the Ni filters are initialized with the same θ0 and
ω0 and then are fine-tuned in a data-driven context during the
training process. As a result, we can obtain the output features
as follows:

O(l) = {
O(l)

1 , O(l)
2 , . . . , O(l)

No

}
(26)

where O(l)
o =

∑Ni
i I(l)

i ∗ G(l)
o,i for o = 1, 2, . . . , No, and I(l) =

{I(l)
1 , . . . , I(l)

Ni
} are the input features of the lth layer. For the

first layer, I(l) are the initial input features of the network,
otherwise I(l) = O(l−1).

Notice that the key difference between the proposed Gabor-
Nets and regular CNNs is the designed form of convolutional
kernels. Therefore, it is very easy to incorporate other CNN
elements or tricks into Gabor-Nets, such as pooling, batch
normalization (BN), and activation functions.

1) Initialization of Gabor Kernels: In order to guarantee
the effectiveness of Gabor kernels, we provide a generally
reliable initialization scheme for Gabor-Nets. First, following
the “search strategy” used for the settings of handcrafted
Gabor filter banks, θ0’s are predefined as an evenly spaced
sequence of [0, π) based on Nt , and ω0’s are set as a geometric
sequence with an initial value of (π/2) and a geometric pro-
gression of (1/2). For example, as shown in Fig. 4, to construct
a Gabor convolutional layer using Nt = 4 and Nm = 2,
we set θ0’s to be 0 and (π/4), (π/2), (3π/4), and ω0’s to be
(π/2) and (π/4), respectively. On the one hand, the “search
strategy” has been proven effective in traditional handcrafted
Gabor feature extraction by covering as many orientations
and frequencies as possible. Then, in Gabor-Nets, although
each kernel is initially specific to one orientation and one
frequency, different orientations and frequencies couple with
each other as the layer goes deeper. On the other hand, such
initializations are in accordance with the common observation
that an HSI contains the information in many directions,
while the discriminative information tends to appear on low
frequencies [5]. The initialization of ρ ’s is relatively empirical
among the four parameters. As stated earlier, ρ controls the
localization scale of the filter. In handcrafted Gabor filter

design, ρ is always set to be one-quarter of the kernel
size. Taken into consideration the fact that CNNs generate
features via multilayer convolutions, we initialize ρ ’s to be
one eight of the kernel size in this work. Regarding the kernel
phase P , we adopt a random initialization of P in order to
increase the diversity of Gabor kernels, aimed at promoting the
robustness of Gabor-Nets. As indicated in (9), P dominates
the harmonic characteristics of Gabor kernels via cos P and
sin P . Therefore, we randomly initialize P0’s within [0, 2π),
i.e., both sin P0 and cos P0 within [−1, 1] in each layer.

2) Updating of Gabor Kernels: In the backpropagation
stage of Gabor-Nets, we update the convolutional kernels as
a whole by solving the aforementioned Gabor parameters,
the gradients of which are aggregated from all the elements
of the kernel as follows:

δτ = ∂L

∂τ
=

∑
x,y

δG ◦ ∂G
∂τ

τ ← τ − δτ , for τ = {θ, ω ρ, P} (27)

where δG is the gradient of the training loss L with respect to
G, ◦ is the Hadamard product, and

∂G
∂ P
= − 1

2πρ 2
exp

(
− x2 + y2

2ρ 2

)
sin (xωx + yωy + P)

= −K sin (xωx + yωy + P) (28)

∂G
∂θ
= − 1

2πρ 2
exp

(
− x2 + y2

2ρ 2

)
sin (xωx + yωy + P)

· (−xω sin θ + yω cos θ)

= ∂G
∂ P
◦ (−xωy + yωx) (29)

∂G
∂ω
= − 1

2πρ 2
exp

(
− x2 + y2

2ρ 2

)
sin (xωx + yωy + P)

· (x cos θ + y sin θ)

= ∂G
∂ P
◦ (x cos θ + y sin θ) (30)

∂G
∂ρ
= − 1

πρ 3
· exp

(
− x2 + y2

2ρ 2

)
cos (xωx + yωy + P)

+ 1

2πρ 2
· x2 + y2

ρ 3
exp

(
− x2 + y2

2ρ 2

)
· cos (xωx + yωy + P)

=
(

x2 + y2

ρ 3
− 2

ρ

)
· 1

2πρ 2
exp

(
− x2 + y2

2ρ 2

)
· cos (xωx + yωy + P)

= G ◦
(

x2 + y2

ρ 3
− 2

ρ

)
. (31)
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Fig. 5. Graphical illustration of the patch generation. Take the patch size of
5, for example.

IV. EXPERIMENTS

In this section, we first present the experimental settings for
the sake of reproduction, following which the proposed Gabor-
Nets are evaluated using three real hyperspectral data sets,
i.e., the Pavia University scene, the Indian Pines scene, and
the Houston scene.2 After that, we investigate some properties
of Gabor-Nets via relevant experiments.

A. Experimental Settings

To conduct the pixelwise HSI classification with CNNs,
patch generation is a widely used strategy in the preprocessing
stage to prepare the inputs of networks [40]–[42]. Let Sp

denote the patch size. The input patch is defined as Sp × Sp

neighboring pixels centered on the given pixel. As shown
in Fig. 5, taking Sp of 5, for example, the patch of the
given pixel A is the surrounding square area, each side of
which is 5 pixels long (the red box in Fig. 5). Accordingly,
the label/output of this patch is that of A.

Regarding the architecture of networks, we utilized the
unit convolutional block (CV Block) and the fully connected
block (FC Block), illustrated in Fig. 6, to construct the basic
network architectures for regular CNNs and Gabor-Nets used
in our experiments. Notice that regular CNNs and Gabor-Nets
shared the same architectures, yet utilized different types of
convolutional kernels. The former used regular kernels, while
the latter used the proposed Gabor kernels. As shown in Fig. 6,
each CV Block contains two convolutional (Conv) layers, one
rectified linear unit (ReLU) nonlinearity layer, and one BN
layer. The CV Block is designed in accordance with [16].
We utilized 16 kernels in each convolutional layers of the first
CV Block. Each additional CV Blocks doubled the kernel
number. For the initialization of Gabor-Nets, the number of
θ0’s of the first CV Block was set to be 4 and then doubled as
more CV Blocks were added. The number of ω0’s remained to
be 4 in all the CV Blocks. The input number was the number
of bands for the first CV block, otherwise equaled the output
number of the last CV Block. No pooling layers were utilized
in CV Blocks since the patch size was relatively small in
our experiments. As reported in Table II, for each CV Block,
regular CNNs contain (k2 − 4)(Ni + No)No more parameters
than Gabor-Nets. The difference becomes larger as k, Ni , and
No increase. On top of the CV Blocks is one FC Block with
two fully connected layers, one global average pooling layer,
and one ReLU layer. In the FC Block, the global average

2The Pavia University scene and the Indian Pines scene can be down-
loaded from https://www.sipeo.bgu.tum.de/downloads. The Houston scene
can be downloaded from https://www.grss-ieee.org/community/technical-
committees/data-fusion/2013-ieee-grss-data-fusion-contest/

Fig. 6. (a) Unit CV Block and (b) FC Block used for the HSI classification
network construction, where Sp is the patch size, c is the index of CV
Blocks, Ni is the number of inputs, Nt and Nm are the numbers of θ0’s
and ω0’s of Gabor convolutional layers, and No is the number of outputs for
the layers/blocks.

TABLE II

NUMBERS OF PARAMETERS USED IN A CV BLOCK OF THE

REGULAR CNNS AND GABOR-NETS, RESPECTIVELY,
WHERE k IS THE KERNEL SIZE

pooling layer is first utilized to rearrange Ni input feature maps
into a vector of Ni elements in order to reduce the number of
parameters of fully connected layers. The output number of
the first fully connected layer is twice its input number, while
that of the second fully connected layer equals the number of
predefined classes for classification purposes. The FC Block
is completely the same for Gabor-Nets and regular CNNs
since it contains no Conv layers. The number of parameters
in an FC Block is (Ni · 2Ni + 2Ni ) + (2Ni · Nc + Nc) =
2Ni

2 + 2Ni + 2Ni Nc + Nc . In our experiments, we used the
cross-entropy loss and Adam optimizer. The learning rate was
initially set to be 0.0076, decaying automatically at a rate
of 0.995 at each epoch. The total number of epochs is 300.

Except for the regular CNNs, we also considered some
other state-of-the-art deep learning-based HSI classification
methods for comparison. The first one used the handcrafted
Gabor features as the inputs of the CNNs (Gabor as inputs)
[38], where the Gabor features were generated from the first
several principal components of HSI data. The handcrafted
parameters were set in accordance with the initializations of
the first convolutional layer of Gabor-Nets. The second one
is the deep contextual CNN (DC-CNN) [41], leveraging the
residual learning to build a deeper and wider network, and
simultaneously using a multiscale filter bank to jointly exploit
spectral and spatial information of HSIs. The next is the
CNN with pixel-pair features (CNN-PPFs) [43], which is a
spectral-feature-based method, using a series of pixel pairs as
inputs. Similar to CNN-PPF, the Siamese convolutional neural
network (S-CNN) [42] also took pairs of samples as inputs, yet
used the pairs of patches to extract deep features, on which the
support vector machine (SVM) was utilized for classification
purposes. The last one is a 3-D CNN proposed in [40], which
actually extracted the spectral–spatial information with 2-D
kernels. As indicated in [40], keeping all the bands of an HSI
as inputs could provide CNNs with full potential in spectral
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Fig. 7. False color map, the GT, and the classification maps obtained from five Monte Carlo runs using 50 training samples per class for the Pavia University
scene. (a) False color. (b) GT. (c) Gabor-SVM. (d) Gabor-SVM. (e) Gabor as inputs. (f) Regular CNNs. (g) Gabor-Nets.

information mining, following which we also fed all the bands
into the networks in our experiments.

Furthermore, two traditional supervised classification algo-
rithms were implemented on handcrafted Gabor features.
The first one is the multinomial logistic regression (MLR) via
variable splitting and augmented Lagrangian algorithm [44],
and the other one is the probabilistic SVM, which estimates the
probabilities via combining pairwise comparisons [45]. Both
methods have been proven successful when dealing with high-
dimensional data.

B. Classification Results

In the following, we describe the obtained experimental
results in detail.

1) Experiments With the Pavia University Scene: This scene
is a benchmark hyperspectral data set for classification, which
was collected by the Reflective Optics Imaging Spectrometer
System (ROSIS) sensor over the urban area of the University
of Pavia, Italy, in 2003 [see Fig. 7(a)]. The image contains
610 × 340 samples with a spatial resolution of 1.3 m and
103 spectral bands ranging from 0.43 to 0.86 μm. The ground
truth (GT) contains 42 776 labeled samples within nine classes
of interest, where the numbers of samples corresponding to
C1–C9 are 6631, 18 649, 2099, 3064, 1345, 5029, 1330, 3682,
and 947, respectively. The training samples were randomly
selected from each class, and the rest were taken for the test.
To test the performance of Gabor-Nets with a small number
of training samples, we evaluated their performance using 50,
100, and 200 training samples per class, respectively. We argue
that 50 training samples per class is not a small training set
for usual methods, but for deep learning-based methods, this
number of training samples is actually limited with respect
to a large number of model parameters. The patch size and
the kernel size were empirically set to 15 and 5, respectively.
The regular CNNs and Gabor-Nets were constructed using two
CV Blocks and one FC Block. In order to guarantee statistical
significance, the results are reported by averaging five Monte
Carlo runs corresponding to independent training sets.

First, we report the test accuracies obtained with different
numbers of training samples for the Pavia University scene
in Table III. As can be observed, the proposed Gabor-Nets
obtained very competitive results when compared to the other
tested methods. The improvements were quite significant,
especially in the case of 50 training samples per class.
The 3-D CNN, Gabor as inputs, and regular CNNs could
obtain very close results to Gabor-Nets under the circumstance
of 200 training samples per class. Nevertheless, Gabor-Nets
outperformed 3-D CNN, Gabor as inputs, and regular CNNs

TABLE III

TEST ACCURACIES (%) OBTAINED FROM FIVE MONTE CARLO RUNS

WITH 50, 100, AND 200 TRAINING SAMPLES PER CLASS, RESPEC-
TIVELY, FOR THE ROSIS PAVIA UNIVERSITY SCENE, WHERE

AUG. REFERS TO AN IMPLEMENTATION WITH THE DATA AUG-
MENTATION STRATEGY AND ∗ MARKS THE IMPLEMENTA-

TIONS CARRIED OUT BY OTHER AUTHORS

with accuracy gains of 5%, 2%, and 10%, respectively, when
using 50 training samples per class. Furthermore, we imple-
mented a data augmentation strategy for regular CNNs and
Gabor-Nets, by mirroring each of them across the horizon-
tal, vertical, and diagonal axes, respectively [41]. As shown
in Table III, the data augmentation strategy benefitted regular
CNNs much more than Gabor-Nets, indicating that Gabor-Nets
were less negatively affected by a lack of training samples
than regular CNNs. This is expected since Gabor-Nets involve
much less free parameters than regular CNNs. Besides, Gabor
filters are able to achieve optimal resolution in both space
and frequency domains, thus suitable for feature extraction
purposes. Therefore, Gabor-Nets based on the Gabor kernels
can still yield representative features to some extent with
limited training samples.

Fig. 8 shows the plots the training accuracies and losses
obtained by the Regular CNNs and Gabor-Nets in the first
150 epochs. It can be seen that Gabor-Nets initially yielded a
higher training accuracy and a smaller loss and then converged
faster, which indicates that Gabor-Nets constructed by Gabor
kernels are able to constrain the solution space of CNNs, thus
playing a positive role in the learning of CNNs.

Some of the classification maps obtained using 50 training
samples per class are shown in Fig. 7. It can be seen that
the classification map obtained by Gabor-Nets is smoother
than those obtained by other methods. In contrast, the maps
obtained by traditional methods are negatively affected by the
appearance of noises. It is known that CNNs extract features
via multilayer convolutions, while traditional shallow filtering
methods convolve the image using a single-layer strategy,
which makes that CNNs have a better ability to remove
noises. However, this also tends to make CNNs oversmooth
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TABLE IV

TEST ACCURACIES (%) ALONG WITH STANDARD DEVIATIONS (%) OBTAINED USING 100 TRAINING SAMPLES PER CLASS FROM FIVE MONTE CARLO
RUNS BY THE REGULAR CNNS AND GABOR-NETS, RESPECTIVELY, CONSTRUCTED USING DIFFERENT NUMBERS OF CV BLOCKS FOR THE

PAVIA UNIVERSITY SCENE. THE NUMBERS OF TRAINABLE PARAMETERS ARE LISTED IN BRACKETS

Fig. 8. (a) Training accuracies and (b) losses as functions of the number of
epochs obtained using 100 training samples per class by Gabor-Nets and the
regular CNNs, respectively. The initial values are marked with circles.

Fig. 9. Test accuracies (along with standard deviations) as a function of patch
sizes for the Pavia University scene using 100 training samples per class.

HSIs sometimes, which leads to information loss, especially,
of small ground objects.

Then, we investigate the relationship between the patch size
and the classification performance of Gabor-Nets. We set the
patch sizes varying from 7 to 23 with an increasing interval
of 2 pixels and illustrate the obtained test accuracies along
with standard deviations in Fig. 9. It can be observed that
very small patches had a negative effect on the classification
accuracies and the robustness of Gabor-Nets. As the patch
size increased, Gabor-Nets performed better. However, when
the patch size became very large, the performance decreased
again. We argue that the patches can be regarded as a series
of local spatial dependence systems [2], using the patch size
to define the neighborhood coverage. According to Tobler’s
first law of geography, the similarity between two objects on
the same geographical surface has an inverse relationship with
their distance. Therefore, those samples located at a distance
away from the central one are not helpful (and even will
confuse the classifier), whereas small patches are unable to
provide relevant information, thus limiting the potential of
networks.

Finally, we test the performance of Gabor-Nets with differ-
ent numbers of CV Blocks. From Table IV, we can observe
that Gabor-Nets exhibit better robustness when using different
numbers of CV Blocks. In this case, Gabor-Nets were able
to achieve more reliable results with more CV Blocks added,
whereas the performance of regular CNNs degraded severely,
as a result of overfitting caused by a sharp rise in parameter

Fig. 10. False color map along with the GT of 8, 9, and 16 classes,
respectively, for the Indian Pines scene. (a) False color. (b) Eight-class GT.
(c) Nine-class GT. (d) 16-class GT.

numbers. In addition, both Gabor-Nets and regular CNNs
performed worse when the number of CV Blocks decreased
to 1, partly due to the decline in the representation ability of
networks. Yet, the drop in test accuracies of Gabor-Nets is
around 1% less than that of regular CNNs, which suggests the
superiority of Gabor-Nets employing the Gabor a priori.

2) Experiments With the Indian Pines Scene: The second
data set used in our experiments is the well-known Indian
Pines scene, collected over a mixed agricultural/forest area in
Northwestern Indiana, USA, by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) sensor in 1992. This scene is
composed of 220 spectral bands with wavelength varying from
0.4 to 2.5 μm and 145× 145 pixels with a spatial coverage
of 20 m×20 m. In our experiments, we removed 20 bands due
to noises and water absorption, resulting in 200 bands. This
scene is challenging for traditional HSI classification methods
due to the fact that most of the samples are highly mixed.
As shown in Fig. 10(d) and Table V, the available GT contains
10 249 labeled samples belonging to 16 unbalanced classes.
To tackle this problem, Liu et al. [42] and Li et al. [43]
removed C1, C4, C7, C9, C13, C15, and C16 from the
original GT, leaving nine classes. Lee and Kwon [41] removed
C6, besides the abovementioned seven classes, leaving eight
classes. Furthermore, Paoletti et al. [40] balanced the number
of training samples of each class in accordance with their
sample sizes via a stratified sampling strategy. For comparison
purposes, we considered all the three circumstances in our
experiments and randomly selected 50, 100, and 200 sam-
ples per class for training, leaving the remains for the test.
Specifically, Table V presents the numbers of training and
test samples using the 16-class GT [40]. We utilized similar
network architecture to the previous one, i.e., two CV Blocks
and one FC Block, with the patch size of 15 and the filter size
of 5. We conducted five Monte Carlo runs and reported the
average results in the following.

Tables VI–VIII list the test accuracies obtained using the
GT of 8, 9, and 16 classes, respectively. Clearly, Gabor-Nets
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Fig. 11. Classification maps obtained using the GT of 16 classes and 50 randomly selected training samples per class (the actual numbers of samples from
each class are shown in Table V) for the Indian Pines scene. (a) False color. (b) 16-class GT. (c) Gabor-SVM. (d) Gabor-SVM. (e) Gabor as inputs. (f) Regular
CNNs. (g) Gabor-Nets.

TABLE V

NUMBERS OF TRAINING AND TEST SAMPLES PER CLASS USING THE GT
OF 16 CLASSES FOR THE INDIAN PINES SCENE

TABLE VI

TEST ACCURACIES (%) OBTAINED FROM FIVE MONTE CARLO RUNS

WITH 50, 100, AND 200 TRAINING SAMPLES PER CLASS, RESPEC-
TIVELY, RANDOMLY SELECTED FROM THE GT OF EIGHT CLASSES

FOR AVIRIS INDIAN PINES SCENE

outperformed the other methods in all the considered cases,
especially when only 50 training samples per class were
utilized, indicating that Gabor-Nets have the capability to
deal with limited training samples. In addition, Gabor-Nets
yielded better classification results than Gabor as inputs, from
which we can infer that Gabor-Nets, via adjusting the Gabor
parameters in a data-driven manner, were able to generate
more effective features than handcrafted Gabor filters. Fur-
thermore, most deep learning-based methods outperformed
the traditional ones, showing the potential of CNNs in HSI
classification tasks.

Fig. 11 shows some of the classification maps obtained with
50 training samples per class using the 16-class GT. As illus-
trated, the assignments by Gabor-Nets are more accurate, and
the corresponding classification map looks smoother. However,
the maps by CNN methods are somewhat oversmoothed on
this scene, partly due to their multilayer feature extraction
strategy, which makes CNNs prone to oversmooth hyperspec-
tral images (HSIs), especially when the interclass spectral
variability is low, as in the case of the Indian Pines scene.

3) Experiments With the Houston Scene: The Houston
scene was acquired by the Compact Airborne Spectrographic
Imagery from the ITRES company (ITRES-CASI 1500) over

TABLE VII

TEST ACCURACIES (%) OBTAINED FROM FIVE MONTE CARLO RUNS

WITH 50, 100, AND 200 TRAINING SAMPLES PER CLASS, RESPEC-
TIVELY, RANDOMLY SELECTED FROM THE GT OF NINE CLASSES

FOR THE INDIAN PINES SCENE

TABLE VIII

TEST ACCURACIES (%) OBTAINED FROM FIVE MONTE CARLO RUNS
WITH 50, 100, AND 200 TRAINING SAMPLES PER CLASS, RESPEC-

TIVELY, RANDOMLY SELECTED FROM THE GT OF 16 CLASSES FOR

THE INDIAN PINES SCENE

TABLE IX

TEST ACCURACIES (%) OBTAINED FROM FIVE MONTE CARLO RUNS
USING THE PUBLIC TRAINING AND TEST SETS FOR THE HOUSTON

SCENE, WHERE ∗ MARKS THE IMPLEMENTATIONS CARRIED OUT

BY OTHER AUTHORS

the area of the University of Houston campus and the
neighboring urban area in 2012. It was first known and
distributed as the HSI provided for the 2013 IEEE Geoscience
and Remote Sensing Society (GRSS) data fusion contest.
This scene is composed of 349 × 1905 pixels at a spatial
resolution of 2.5 m and 144 spectral bands ranging from 380 to
1050 nm. The public GT contains 15 029 labeled samples
of 15 classes, including 2832 training samples (198, 190, 192,
188, 186, 182, 196, 191, 193, 191, 181, 192, 184, 181, and
187 corresponding to C1–C15, respectively) and 12 197 test
samples (1053, 1064, 505, 1056, 1056, 143, 1072, 1053,
1059, 1036, 1054, 1041, 285, 247, and 473 corresponding
to C1–C15, respectively), as shown in Fig. 12. This data set
is a typical urban scene with a complex spatial appearance
containing many natural or artificial ground fabrics, based on
which, we utilized three CV Blocks and one FC Block to mine
deeper feature representations and empirically set the patch
size and filter size as 13 and 3, respectively. We utilized the
publicly available training set and repeated the tested CNN-
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TABLE X

TEST ACCURACIES (%) ALONG WITH STANDARD DEVIATIONS (%) OBTAINED FROM FIVE MONTE CARLO RUNS USING THE PUBLIC TRAINING SET
BY THE REGULAR CNNS AND GABOR-NETS CONSTRUCTED USING DIFFERENT NUMBERS OF CV BLOCKS FOR THE HOUSTON SCENE. THE

NUMBERS OF TRAINABLE PARAMETERS ARE LISTED IN BRACKETS

Fig. 12. False color map, training set, test set, and classification maps
for the Houston scene. (a) False color map. (b) Training set. (c) Test set.
(d) Gabor-SVM. (e) Gabor-MLR. (f) Gabor as inputs. (g) Regular CNNs.
(h) Gabor-Nets.

based methods five times with respect to different random
initializations.

First, we quantitatively evaluate the classification perfor-
mance in Table IX, where the proposed Gabor-Nets obtained
the highest test accuracies. However, other deep learning-
based methods could not outperform the traditional ones as
much as they did in the previous scenes. These observations
indicate that Gabor-Nets also exhibit potential when dealing
with complex urban scenarios.

A visual comparison can be found in Fig. 12, where the
classification map generated by Gabor-Nets looks smoother
than the others, also with clear roads. Furthermore, more

Fig. 13. Test accuracies (along with standard deviations) as a function of
patch sizes for the Houston scene using the public training samples.

details below the cloud are revealed on the map by Gabor-Nets
than those by Gabor as inputs and regular CNNs, which
suggests the effectiveness of the proposed Gabor kernels.
Besides, the maps by traditional methods are severely affected
by the appearance of noises though they yielded very close
statistic results to CNNs and Gabor as inputs.

Next, we evaluated the performance of Gabor-Nets with
varying patch sizes in Fig. 13. Similar to the experiments on
the Pavia University scene, too small and too big patches both
had a negative effect on the performance of Gabor-Nets. This
scene is more sensitive to big patches. As mentioned earlier,
this scene is quite complex spatially. As a result, big patches
tend to damage their underlying spatial structure.

Finally, we investigate the relationship between the num-
ber of CV Blocks and the classification performance of the
proposed Gabor-Nets. As illustrated in Table X, for all the
considered architectures, the number of required parameters
of Gabor-Nets was only around half of that of regular CNNs.
Also, Gabor-Nets performed better than regular CNNs, no mat-
ter what architecture was utilized. The Gabor-Nets were able
to maintain its superiority as more CV Blocks were involved
in the architectures, whereas an obvious degradation can be
observed in the obtained test accuracies of regular CNNs when
the number of CV Blocks increased from 3 to 4.

C. Model Insight

To further analyze the mechanism behind Gabor-Nets,
we investigate some of the properties of Gabor-Nets. For
illustrative purposes, we focus on the experiments with the
Pavia University scene (using 100 randomly selected training
samples per class without the augmentation strategy).

1) Visualizations of First-Layer Features: To help readers
understand more about what Gabor-Nets learn at the bottom
layers, we visualize their first-layer features along with those
of regular CNNs in Fig. 14, which are extracted from two
patches (15×15) of the Pavia University scene. As illustrated,
both regular CNNs and Gabor-Nets can extract features at
certain orientations, which indicates that their low-layer fea-
tures share some similar characteristics. However, the features
extracted by regular CNNs are somewhat blurred and in
various shapes. In contrast, the boundaries are depicted clearly
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Fig. 14. Two patches along with their corresponding output features from the first layers of CNNs and Gabor-Nets, respectively, using 100 training samples
per class for the Pavia University scene.

TABLE XI

TEST ACCURACIES OBTAINED WITH DIFFERENT INITIALIZATIONS, WHERE “–” DENOTES THE INITIALIZATION SCHEME PROPOSED IN THIS ARTICLE;
OTHERWISE, THE LETTERS REPRESENT THE CASES OF USING CERTAIN RANDOM INITIALIZATION(S) TO REPLACE THE CORRESPONDING

ORIGINAL INITIALIZATION(S) IN THE PROPOSED INITIALIZATION SCHEME

on the feature maps by Gabor kernels, and each feature map
reflects the information specific to orientation and a frequency.
This confirms that although the variety of the features obtained
by Gabor kernels is not as high as that obtained by regular
kernels, Gabor-Nets can extract more compact and repre-
sentative features since the underlying features of HSIs are
relatively simple, mainly composed of a series of geometrical
and morphological features, in which case Gabor filters have
been proven effective.

2) Initialization Scheme: In this article, we design an initial-
ization scheme in accordance with Gabor a priori knowledge
for Gabor-Nets to guarantee their performances. To verify the
reliability of our initialization scheme, we conducted some
experiments using the network architecture of one CV Block
and one FC Block with random initializations of θ ’s, ω’s, and
ρ ’s for the Pavia University scene. Let μ̃ and ρ̃ denote the
mean and the standard deviation of the normal distribution.
The random initializations of θ ’s, ω’s, and ρ ’s adopted in our
experiments are as follows:

1) θ0’s obeying a uniform distribution within [0, 2π);
2) ω0’s obeying a normal distribution with μ̃ = 0 and ρ̃ =

π/4;
3) ρ0’s obeying a normal distribution with μ̃ = 0 and ρ̃ =

5/8.

We utilize the abovementioned random initializations to
replace the corresponding original initializations in the pro-
posed initialization scheme and report the obtained results
in Table XI, from which we can observe that the initialization
scheme can guarantee Gabor-Nets to yield reliable results.

3) Phase Offsets: As stated earlier, the kernel phase P is
crucial in Gabor-Nets, which controls the frequency character-
istics of Gabor kernels. To test the role of P , we implemented
two variants of Gabor-Nets, i.e., the one with all Ps initialized
to 0 (P0 = 0) and the one without P (P = 0). Fig. 15
shows the training accuracies obtained with initial learning
rates of 0.0076 and 0.02, respectively, as functions of the
number of epochs. Remarkably, randomly initializing P in
[0, 2π) can make Gabor-Nets achieve better performance and
higher robustness with different learning rates in comparison to
the two variants, where Gabor-Nets yielded results of around

Fig. 15. Training accuracies obtained with an initial learning rate of
(a) 0.0076 and (b) 0.02, respectively, as functions of the number of epochs,
where three types of Gabor-Nets are considered: the one that we proposed
(red), the one with P’s initialized to 0, i.e., P0 = 0 (blue), and the one without
P , i.e., P = 0 (black). The dashed lines indicate their test accuracies.

98% using both the considered initial learning rates. Quite
opposite, the two variants performed much worse when using
the initial learning rate of 0.0076. Recall that the gradient-
descend backpropagation is a local search algorithm, in which
reducing the learning rate will bring to smaller adjustments to
the parameters, thus easily leading to the gradient vanishing
phenomenon. Therefore, it can be inferred that Gabor-Nets
with randomly initialized P’s can resist against this phe-
nomenon to some extent. The differences of test accuracies
between the Gabor-Nets and two variants still exist when the
learning rate increases although the two variants performed
better. Furthermore, the variant without P yielded the worst
results among the three models, which indicates that without
the kernel phase term P , the ability of Gabor-Nets will be
restricted since the frequency properties of Gabor kernels
cannot adaptively follow the data. Regarding P0 = 0, the fixed
initialization will also harm the potential of Gabor-Nets due
to a lack of diversity.

In another experiment, we investigate the learned angular
frequencies of Gabor-Nets and the two variants. Fig. 16 shows
the finally learned frequencies of Gabor kernels in the first
layer (in terms of their angles and magnitudes), with an initial
learning rate of 0.0076. Noticeably, the learned frequencies of
Gabor-Nets tend to cover the whole semicircle region, while
those of the two variants are only distributed at some local
narrow regions, i.e., their θ ’s and ω’s changed rarely in the
learning process, which suggests that the two variants suffered
from the gradient vanishing problem. Thus, from these results,

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on February 09,2021 at 17:50:06 UTC from IEEE Xplore.  Restrictions apply. 



388 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Fig. 16. Visualization of the initial and the finally learned frequencies of the Gabor kernels in the first layer. Each point (ω, θ) corresponds to a learned
kernel, constructed with the angle θ and the frequency magnitude ω. The colored points represent the kernels with different ω0’s. The circles (from inside
out) represent the cases where ω is π/16, π/8, π/4, π/2, and 2.4, respectively. Notice that all the learned frequencies in the cases (b)–(d) used the same
initialization shown in (a). (a) Initialization. (b) Gabor-Nets. (c) P0 = 0. (d) P = 0. (Best viewed in color.)

Fig. 17. Visualization of the learned frequencies (first row) and the histograms of the learned scales (second row) of the Gabor kernels in the first layer,
where each column and each color show the learned parameters initialized with the same θ0’s and ω0’s, respectively, and all the ρ ’s are initialized as k/8,
i.e., (5/8) in our experiments. That is, the points and the bars marked with the same color in a column correspond to one of the 16 output features in the first
layer. The circles from inside out represent the cases where ω is (π/16), (π/8), (π/4), (π/2), and 2, respectively. (a) θ0 = 0. (b) θ0 = π/4. (c) θ0 = π/2.
(d) θ0 = 3π/4. (Best viewed in color.)

we can infer that Gabor-Nets with randomly initialized kernel
phases could resist against the gradient vanishing problem to
some extent and positively affect the learning process of other
parameters.

4) Parameters in Traditional Gabor Filters: Here, we ana-
lyze other parameters used in often-used handcrafted Gabor
filter construction, i.e., the frequency angle θ , the frequency
magnitude ω, and the scale ρ in Gabor-Nets. Fig. 17 shows
the learned angular frequencies determined by θ ’s and ω’s and
the histograms of the learned ρ s of the Gabor kernels in the
first layer, where each color in each column corresponds to
a kernel bank used to generate an output feature, i.e., G(1)

o .
As shown in the first row of Fig. 17, almost all the points
gather in a θ0-centric sector region with an angle range of
(π/4), where those marked with different colors are well
distributed around the arc corresponding to their ω0’s. Namely,
although the points in Fig. 16(b) tend to cover the whole
semicircle region, the points representing different kernel
banks barely overlap with each other. This means that around
θ0 and ω0, the Gabor kernel banks can extract the features with
varying θ ’s and ω’s rather than those intended for a single
predetermined frequency (as the handcrafted Gabor filters
do), thus making Gabor filters in Gabor-Nets more powerful.
Furthermore, as shown in the second row of Fig. 17, ρ ’s are
also automatically adjusted following the data characteristics
during the learning process.

V. CONCLUSION

We have introduced the naive Gabor-Nets for HSI classifica-
tion that, for the first time in the literature, designs and learns
convolutional kernels strictly in the form of Gabor filters with
much fewer parameters in comparison with regular CNNs,
thus requiring a smaller training set and achieving faster
convergence. By exploiting the kernel phase term, we develop
an innovative phase-induced Gabor kernel, with which Gabor-
Nets are capable to tune the convolutional kernels for data-
driven frequency responses. In addition, the newly developed
phase-induced Gabor kernel is able to fulfill the traditional
Gabor filtering in a real-valued manner, thus making it possible
to directly and conveniently use Gabor kernels in a usual
CNN thread. Another important aspect is that since we only
manipulate the way of kernel generation, Gabor-Nets can be
easily implemented with other CNN tricks or structures. Our
experiments on three real HSI data sets show that Gabor
kernels can significantly improve the convergence speed and
the performance of CNNs, particularly in scenarios with
relatively limited training samples. However, the classification
maps generated by Gabor-Nets tend to be oversmoothed
sometimes, especially if ground objects are small and the
interclass spectral variability is low. In the future, we will
develop some edge-preservation strategies for Gabor-Nets to
alleviate these negative effects. Furthermore, we will explore
new kinds of filters that can be used as kernels in networks,
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which provides a plausible future research line for the CNN-
based HSI classification.
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