MATH 423 (Spring 2012) Exam II, April 12th

No calculators, books or notes!
Show all work and give complete explanations for all your answers.

(1) [12 pts]
(a) Define the concept of a 1-form on \(\mathbb{R}^3 \).

(b) Let \(V \) be a vector field on \(\mathbb{R}^3 \). Define \(\omega \) by \(\omega_p(w) = w \cdot V(p) \), where \(p \) is a point in \(\mathbb{R}^3 \) and \(w \) is a tangent vector to \(\mathbb{R}^3 \) at \(p \). Prove that \(\omega \) is a 1-form on \(\mathbb{R}^3 \).
(2) [16 pts]
(a) Define the concept of a coordinate patch.

(b) Does the equation \((x^2 + y^2)^2 + 4z^2 - 16z + 15 = 0\) define a surface?
(3) [12 pts] Let M be the surface parametrized by $\mathbf{x}(u, v) = (u \cos v, u \sin v, v)$ for $0 < u < 1$ and $0 < v < \pi$. Orient M using the upward normal. Let \mathbf{F} be the vector field on \mathbb{R}^3 defined by $\mathbf{F}(x, y, z) = (y, -x, z^2)$. Calculate $\iint_M \mathbf{F} \cdot d\mathbf{A}$.

(4) [15 pts] The catenoid, \(M \), is the surface obtained by rotating the catenary curve \(z = \cosh y \) about the \(y \)-axis. [Recall that \(\cosh x = (e^x + e^{-x})/2 \) and \(\sinh x = (e^x - e^{-x})/2 \).]

(a) Find a formula for a coordinate patch \(\mathbf{x} : D \to \mathbb{R}^3 \) for \(M \). Make sure you specify the domain \(D \) of \(\mathbf{x} \). [Do not prove that \(\mathbf{x} \) is a patch, just write down a formula for it.]

(b) Sketch \(M \) together with some of its coordinate (grid) curves.
(c) Calculate a parametrization of the tangent plane to M at the point $(x, y, z) = (\frac{\sqrt{3}}{2} \cosh 1, 1, \frac{1}{2} \cosh 1)$.

(5) [8 pts] Let \mathbf{F} be the vector field on \mathbb{R}^3 given by $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$. About what axis is the circulation of \mathbf{F} the greatest at the point $(2, 1, 3)$?
(a) Give a careful statement of the Divergence Theorem.

(b) Let \mathbf{F} be a vector field on \mathbb{R}^3. Let $p \in \mathbb{R}^3$ and let B_ϵ be the ball of radius $\epsilon > 0$ centered at p. (So B_ϵ is a three-dimensional solid.) Let ∂B_ϵ denote the boundary surface of B_ϵ, oriented using the outward pointing normal vector field. Prove that

$$(\nabla \cdot \mathbf{F})(p) = \lim_{\epsilon \to 0} \frac{1}{\text{Vol}(B_\epsilon)} \int_{\partial B_\epsilon} \mathbf{F} \cdot d\mathbf{A}.$$

(c) Now suppose that $\mathbf{F} = \rho \mathbf{v}$ where ρ is the density of a fluid and \mathbf{v} is its velocity vector field. Use the result in (b) to provide a physical interpretation of $\nabla \cdot \mathbf{F}$ at p.

Pledge: I have neither given nor received aid on this exam

Signature: ________________________________