MATH 251 (Spring 2004) Exam 3, April 28th

No calculators, books or notes!
Show all work and give complete explanations for all your answers.
This is a 65 minute exam. It is worth a total of 75 points.
(1) $[14 \mathrm{pts}]$ Set up integrals of the form

$$
\int_{t=a}^{t=b} h(t) d t
$$

that are equal to the following integrals, but do NOT evaluate the integrals you set up.
(a) $\int_{C} \ln (x+y) d s$, where C is the curve which is arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.
(b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve parametrized by $r(t)=\left(1+2 t, 3+4 t^{2}\right)$ for $0<t<2$ and $\mathbf{F}(x, y)=$ $x^{2} \mathbf{i}+\sin (y) \mathbf{j}$.
(2) $[13 \mathrm{pts}]$
(a) Calculate $\iint_{D} y d A$, where D is the region in the first quadrant of the $x y$-plane that lies above the hyperbola $x y=1$, above the line $y=x$ and below the line $y=2$.
(b) Find $a, b, f_{1}(x)$ and $f_{2}(x)$ so that

$$
\int_{y=0}^{y=1} \int_{x=3 y}^{x=3} e^{x^{2}} d x d y=\int_{x=a}^{x=b} \int_{y=f_{1}(x)}^{y=f_{2}(x)} e^{x^{2}} d y d x
$$

(3) [14 pts] Consider the two vector fields

$$
\begin{aligned}
& \mathbf{F}_{1}(x, y)=\left(2 x y-2 y^{2} \sin x\right) \mathbf{i}+\left(x^{2}+4 y \cos x\right) \mathbf{j} \\
& \mathbf{F}_{2}(x, y)=\left(2 x y^{2}-2 y \sin x\right) \mathbf{i}+\left(x^{2}+4 y^{2} \cos x\right) \mathbf{j}
\end{aligned}
$$

One of these vector fields is conservative.
(a) Which vector field is conservative and which is not? Why?
(b) For the vector field that is conservative, evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any curve from $(0,0)$ to $(0,1)$.
(4) $[12 \mathrm{pts}]$
(a) Carefully state Green's Theorem
(b) Use Green's Theorem to evaluate $\int_{C} x^{2} y d x-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
(5) [12 pts] Use the Method of Largange Multipliers to maximize the function $f(x, y)=x y$ subject to the constraint $4 x^{2}+y^{2}=16$. [Hint: There are 4 critical points.]
(6) [10 pts] State and prove the Fundamental Theorem of Calculus for Line Integrals.

Pledge: I have neither given nor received aid on this exam

Signature:

