MATH 251 (Spring 2004) Exam 3, April 28th

No calculators, books or notes!

Show all work and give **complete explanations** for all your answers. This is a 65 minute exam. It is worth a total of 75 points.

(1) [14 pts] Set up integrals of the form

$$\int_{t=a}^{t=b} h(t) \, dt$$

that are equal to the following integrals, but do NOT evaluate the integrals you set up.

(a) $\int_C \ln(x+y) ds$, where C is the curve which is arc of the parabola $y = x^2$ from (1,1) to (3,9).

(b) $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve parametrized by $r(t) = (1 + 2t, 3 + 4t^2)$ for 0 < t < 2 and $\mathbf{F}(x, y) = x^2 \mathbf{i} + \sin(y) \mathbf{j}$.

(2) [13 pts]

(a) Calculate $\iint_D y \, dA$, where D is the region in the first quadrant of the xy-plane that lies above the hyperbola xy = 1, above the line y = x and below the line y = 2.

(b) Find $a, b, f_1(x)$ and $f_2(x)$ so that

$$\int_{y=0}^{y=1} \int_{x=3y}^{x=3} e^{x^2} dx dy = \int_{x=a}^{x=b} \int_{y=f_1(x)}^{y=f_2(x)} e^{x^2} dy dx$$

(3) [14 pts] Consider the two vector fields

$$\mathbf{F}_{1}(x,y) = (2xy - 2y^{2}\sin x)\mathbf{i} + (x^{2} + 4y\cos x)\mathbf{j}$$

$$\mathbf{F}_{2}(x,y) = (2xy^{2} - 2y\sin x)\mathbf{i} + (x^{2} + 4y^{2}\cos x)\mathbf{j}$$

One of these vector fields is conservative.

(a) Which vector field is conservative and which is not? Why?

(b) For the vector field that is conservative, evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is any curve from (0,0) to (0,1).

(4) [12 pts]

(a) Carefully state Green's Theorem

(b) Use Green's Theorem to evaluate $\int_C x^2 y dx - xy^2 dy$, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation. (5) [12 pts] Use the Method of Largange Multipliers to maximize the function f(x, y) = xy subject to the constraint $4x^2 + y^2 = 16$. [Hint: There are 4 critical points.]

(6) [10 pts] State and prove the Fundamental Theorem of Calculus for Line Integrals.

Pledge: I have neither given nor received aid on this exam

Signature: _____