## MATH 251 (Spring 2004) Final Exam, May 12th

No calculators, books or notes!
Show all work and give complete explanations for all your answers.
This is a 120 minute exam. It is worth a total of 120 points.
(1) $[12 \mathrm{pts}]$
(a) Let $S$ be the surface $z=x y^{2}+x^{2} e^{y-2}$. Find an equation of the form $a x+b y+c z=d$ for the tangent plane to $S$ at the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,2,5)$.
(b) Let $C$ be the curve in space parametrized by $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$.

Find a parametrization of the tangent line to this curve at $t=1$.
(2) $[10 \mathrm{pts}]$

Let $D$ be the region in the $x y$ plane bounded by $y=0, y=x^{2}$, and $x=1$. Calculate $\iint_{D} x \cos y d A$
(3) [12 pts] Let $f$ be the function $f(x, y)=x^{2}+3 y^{2}+4 x y$.
(a) In what direction is the rate of change of $f$ the largest at the point $(x, y)=(2,3)$, and what is the rate of change of $f$ in this direction?
(b) Let $\mathbf{r}(t)=(x(t), y(t))$ be the parameterized curve in the plane for which the graphs of the functions $x=x(t)$ and $y=y(t)$ are given by:

Let $g=f \circ \mathbf{r}$, where the formula for $f$ is given above. Find $g^{\prime}(0)$.
(4) $[10 \mathrm{pts}]$

Let $\mathbf{F}$ be the vector field $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y z \mathbf{j}+x e^{3 z} \mathbf{k}$.
(a) Compute $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$.
(b) Now suppose that the vector field $\mathbf{F}$ given above is the velocity vector of a fluid. If you placed a small paddle wheel in the fluid at the origin, what would happen?
(5) $[18 \mathrm{pts}]$
(a) Set up an iterated triple integral that equals the volume of the solid that is bounded by the planes $x=0, y=0, z=0,2 y+3 z=6$, and the surface $x=y z$. Do NOT attempt to evaluate the triple integral.
(b) Compute $\int_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z^{4} \mathbf{k}$, and $S$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath the plane $z=1$ with an upward normal.
(6) [15 pts] Find the local maximum and minimum values and saddle points of the function

$$
f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}
$$

(7) [16 pts] Sketch the following curves and surfaces (a) $x=4 y^{2}+z^{2}$
(c) $\mathbf{r}(t)=(t \cos t, t \sin t, t)$, for $0<t<2 \pi$
(d) $\mathbf{r}(x, \theta)=(\cos \theta, x, \sin \theta)$ for $0<x<2$ and $0<\theta<\pi$
(8) [10 pts] Let $\mathbf{a}$ and $\mathbf{b}$ be two non-zero vectors and suppose that the vector $\mathbf{c}=|\mathbf{a}| \mathbf{b}+|\mathbf{b}| \mathbf{a}$ is also non-zero. Use vector algebra to show that the angle between $\mathbf{a}$ and $\mathbf{c}$ is the same as the angle between $\mathbf{b}$ and $\mathbf{c}$.
(9) $[12 \mathrm{pts}]$ Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ be the vector field given by

$$
\mathbf{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j} .
$$

Notice that $\mathbf{F}$ is defined on all of $\mathbf{R}^{2}$ except for the origin. For this problem you may use the fact that $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ on all of $\mathbf{R}^{2}$ except for the origin. ( $\mathbf{F}$ is not defined at the origin.)
(a) Let $C_{\epsilon}$ be the curve which is the circle of radius $\epsilon>0$ centered at the origin, with counterclockwise orientation. Compute $\int_{C_{\epsilon}} \mathbf{F} \cdot d \mathbf{r}$.
(b) Let $C$ be the oriented curve shown in the diagram. Use Green's Theorem to show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{\epsilon}} \mathbf{F} \cdot d \mathbf{r}$.
(10) [5 pts] Let $\mathbf{F}$ be a vector field on $\mathbf{R}^{3}$ whose component functions have continuous partial derivatives. Calculate the value of $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$, where the surface $S$ is the sphere of radius 1 centered at the origin, with outward normal vector.

Pledge: I have neither given nor received aid on this exam

Signature:

