MATH 251 (Fall 2009) Hwk on Dot Product (10.3)

(1) Let $\mathbf{v}=(1,-2,4)$ and $\mathbf{w}=(-2,3,1)$. Compute
(a) $3 \mathbf{v}-5 \mathbf{w}$
(b) $\mathbf{v} \cdot \mathbf{w}$
(c) $|\mathbf{v}-\mathbf{w}|$ and provide a geometric intrepretation for the answer.
(d) $\frac{\mathbf{v}}{|\mathbf{v}|}$ and provide a geometric intrepretation for the answer
(e) The angle between \mathbf{v} and \mathbf{w} in degrees
(f) The vector projection, $\operatorname{Proj}_{\mathbf{v}}(\mathbf{w})$, of \mathbf{w} onto \mathbf{v}
(g) The component, $\operatorname{Comp}_{\mathbf{v}}(\mathbf{w})$, of \mathbf{w} along \mathbf{v}.
(2) Find the equation of the sphere one of whose diameters is the line segement joining $(1,-2,4)$ to $(-2,3,1)$.
(3) Consider the sphere $x^{2}+y^{2}+z^{2}+4 x-6 y=0$. Let $\mathbf{r}=(x, y, z)$ be an arbitrary point on this sphere. Find a vector a and a scalar c so that the vector equation of the sphere is $|\mathbf{r}-\mathbf{a}|=c$. What do \mathbf{a} and c represent geometrically?
(4) Determine whether the vectors $(4,-2,6)$ and $(4,2,2)$ are perpendicular.
(5) Use the dot product to construct a nonzero vector perpendicular to both $(1,2,-3)$ and $(2,0,1)$.
(6) Given vectors \mathbf{a} and \mathbf{b}, let $a=|\mathbf{a}|$ and $b=|\mathbf{b}|$. Use dot products to show that the vector

$$
\mathbf{c}=\frac{b \mathbf{a}+a \mathbf{b}}{a+b}
$$

bisects the angle between \mathbf{a} and \mathbf{b}.

