MATH 251 (Fall 2009) Hwk on Dot Product (10.3)

(1) Let $\mathbf{v} = (1, -2, 4)$ and $\mathbf{w} = (-2, 3, 1)$. Compute

- (a) 3v 5w
- (b) $\mathbf{v} \cdot \mathbf{w}$

(c) $|\mathbf{v} - \mathbf{w}|$ and provide a geometric intrepretation for the answer.

- (d) $\frac{\mathbf{v}}{|\mathbf{v}|}$ and provide a geometric intrepretation for the answer
- (e) The angle between \mathbf{v} and \mathbf{w} in degrees
- (f) The vector projection, $\operatorname{Proj}_{\mathbf{v}}(\mathbf{w})$, of \mathbf{w} onto \mathbf{v}
- (g) The component, $\operatorname{Comp}_{\mathbf{v}}(\mathbf{w})$, of \mathbf{w} along \mathbf{v} .

(2) Find the equation of the sphere one of whose diameters is the line segement joining (1, -2, 4) to (-2, 3, 1).

(3) Consider the sphere $x^2 + y^2 + z^2 + 4x - 6y = 0$. Let $\mathbf{r} = (x, y, z)$ be an arbitrary point on this sphere. Find a vector \mathbf{a} and a scalar c so that the vector equation of the sphere is $|\mathbf{r} - \mathbf{a}| = c$. What do \mathbf{a} and c represent geometrically?

(4) Determine whether the vectors (4, -2, 6) and (4, 2, 2) are perpendicular.

(5) Use the dot product to construct a nonzero vector perpendicular to both (1, 2, -3) and (2, 0, 1).

(6) Given vectors **a** and **b**, let $a = |\mathbf{a}|$ and $b = |\mathbf{b}|$. Use dot products to show that the vector

$$\mathbf{c} = \frac{b\mathbf{a} + a\mathbf{b}}{a+b}$$

bisects the angle between **a** and **b**.