MATH 251 (Fall 2009) Hwk on Cross Product (10.4)

(1) Find $\mathbf{a} \times \mathbf{b}$ when
(a) $\mathbf{a}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$,
(b) $\mathbf{a}=(2,-3)$ and $\mathbf{b}=(4,5)$.
(2) Find two different unit vectors both of which are perpendicular to both $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$.
(3) Show that the cross product is not associative by comparing $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ to $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ in the case that $\mathbf{a}=\mathbf{i}, \mathbf{b}=\mathbf{i}+\mathbf{j}$, and $\mathbf{c}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(4) Find non-zero vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} so that $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$ but $\mathbf{b} \neq \mathbf{c}$.
(5) Suppose that three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} are mutually perpendicular. Explain why $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\mathbf{0}$.
(6) Find the area of the triangle with vertices $P=(1,3,-2), Q=(2,4,5)$, and $R=(-3,-2,2)$.
(7) Find the volume of the parallelipiped determiend by the vectors $\mathbf{a}=$ $\mathbf{i}-\mathbf{j}+3 \mathbf{k}, \mathbf{b}=-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$, and $\mathbf{c}=3 \mathbf{i}-4 \mathbf{k}$.

