MATH 251 (Fall 2009) Hwk on Lines and Planes (10.5)

Recall the following defintions from class:
(i) A vector parametrization of the line through the endpoint of the vector \mathbf{a} in the direction of the vector \mathbf{b} is given by $\mathbf{r}(t)=\mathbf{a}+t \mathbf{b}$, where $t \in \mathbf{R}$.
(ii) A scalar parametrization of the line in (i) is

$$
\begin{aligned}
& x=a_{1}+t b_{1} \\
& y=a_{2}+t b_{2} \\
& z=a_{3}+t b_{3}
\end{aligned}
$$

where $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$.
(iii) A level set equation of a plane is an equation of the form $a x+b y+c z=d$, where a, b, c, d are real numbers.
(iv) A parametrization of a plane through the endpoint of the vector \mathbf{u} that contains the vectors \mathbf{v} and \mathbf{w} is of the form $\mathbf{r}(s, t)=\mathbf{u}+s \mathbf{v}+t \mathbf{w}$, where $s, t \in \mathbf{R}$.
(1) Find a vector parametrization and a scalar parametrization for the line passing through the point $(3,-4,5)$ in the direction of the vector $\mathbf{v}=$ $-2 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$.
(2) Find a vector parametrization for the line passing through the points $(1,2,3)$ and $(9,8,7)$.
(3) Find a vector parametrization for the line through the point $(2,5,6)$ and perpendicular to the plane $2 x-4 y+5 z=9$.
(4) Find a vector parametrization for the line through the point $(2,5,6)$ and parallel to the line with scalar parametric equations $x=-1-2 t, y=3 t+7$, $z=6 t-2$.
(5) Find the level set equation and a parametrization of the plane through the point $(1,2,3)$ with normal vector $(4,5,6)$.
(6) Find the level set equation of the plane through the point $(1,2,3)$ parallel to the plane $3 x-5 y+7 z=8$.
(7) Find the level set equation and a parametrization of the plane through the points $(1,0,-1),(3,3,2)$, and $(4,5,-1)$.
(8) Find a parametrization of the plane that contains both the point $(2,4,6)$ and the line $x=7-3 t, y=3+4 t, z=5+2 t$.
(9) Does the line $x=3+2 t, y=6-5 t, z=2+3 t$ intersect the plane $3 x+2 y-4 z=1$?

