MATH 251 (Fall 2009) Hwk on Acrlength and Curvature (11.2)

(1) Consider the curve $\mathbf{r}(t)=t \mathbf{i}+\frac{2}{3} t^{3 / 2} \mathbf{k}$ for $0 \leq t \leq 8$. Find the unit tangent vector to this curve at $t=2$. Also find the length of the curve.
(2) Calculate the arclength function

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

for the curve

$$
\mathbf{r}(t)=(1+2 t) \mathbf{i}+(1+3 t) \mathbf{j}+(6-6 t) \mathbf{k} \quad 0 \leq t \leq 1
$$

and use it to calculate the length of the curve.
(3) Calculate the unit tangent vector and the curvature of the following curves.
(a) $\mathbf{r}(t)=(2 t+3) \mathbf{i}+\left(5-t^{2}\right) \mathbf{j}$
(b) $\mathbf{r}(t)=(3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j}+4 t \mathbf{k}$
(c) $\mathbf{r}(t)=\left(\cos ^{3} t\right) \mathbf{i}+\left(\sin ^{3} t\right) \mathbf{j}$

