NAME:

1	/10	2	/12	3	/12	4	/10	5	/6	Τ	/50

MATH 251 (Fall 2009) Exam I, Sept 28th

No calculators, books or notes! Show all work and give **complete explanations**. This is 65 min exam is worth 50 points.

- (1) [10 pts]
- (a) Calculate the projection, $\operatorname{Proj}_{\mathbf{v}}(\mathbf{w})$, of the vector $\mathbf{w} = (1, -2, 5)$ onto the vector $\mathbf{v} = (0, 4, -3)$.

(b) Calculate the volume of the parallelipiped with three adjacent edges given by the vectors $\mathbf{a} = (2, 1, 0)$, $\mathbf{b} = (1, 3, 0)$, and $\mathbf{c} = (1, 2, -4)$.

(2)	12	pts
(Δ)	12	hrol

(a) Find a vector parametric equation for the line through the point (1, 2, -1) that is normal to the plane 2x - y + 3z = 12.

(b) Find a parametrization of the plane containing the point (1, -2, 1), (2, -1, 0) and (3, -2, 2).

(3) [12 pts] Consider the quadric surface

$$z^2 = x^2 + 4y^2.$$

Find the equations for the slices (i.e., traces) of this surface in the planes x = k, y = k, z = k for a few appropriately chosen values of k. Sketch each of these traces in a plane. Then sketch the surface in space.

(4)	[10	ntsl
(4)	ΙTΟ	pusi

(a) Convert the point (x, y, z) = (1, -1, 1) in rectangular coordinates to spherical coordinates. [Hint: You may find it helpful to draw a picture.]

(b) Sketch the graph of the surface whose equation is cylindrical coordinates is $z = 4 - r^2$.

(5)	[6 pt	s] Which	of the	following	statements	are	always	true	and	which	are	not	always	true.	Give r	easons
for	your	answers														

(a)
$$\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$$

(b)
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$$

(c)
$$\mathbf{u} \times \mathbf{u} = |\mathbf{u}|^2$$

Pledge: I have neither given nor received aid on this exam

Signature: