SOLUTIONS NAME:

1	/10	2	/12	3	/12	4	/10	5	/6	Т	/50

MATH 251 (Fall 2009) Exam I, Sept 28th

No calculators, books or notes! Show all work and give complete explanations. This is 65 min exam is worth 50 points.

(1) [10 pts]

(a) Calculate the projection, $\text{Proj}_{\mathbf{v}}(\mathbf{w})$, of the vector $\mathbf{w} = (1, -2, 5)$ onto the vector $\mathbf{v} = (0, 4, -3)$.

$$PROJ_{7}(\vec{u}) = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|} = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} + \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} + \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} + \frac{\vec{v} \cdot \vec{u}|^{2}}{|\vec{v}|^{2}} + \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}} + \frac{\vec{v} \cdot \vec{u}}{|\vec{v}|^{2}$$

(b) Calculate the volume of the parallelipiped with three adjacent edges given by the vectors $\mathbf{a} = (2, 1, 0)$, VOL = | (à x b) . 2 | = | det |] $\mathbf{b} = (1, 3, 0), \text{ and } \mathbf{c} = (1, 2, -4).$

VOL = | 2 1 0 |

$$=$$
 $\left| \frac{2}{2} \right|^{3} \left| \frac{3}{1 - 4} \right| - \left| \frac{1}{1 - 4} \right| + \left| \frac{3}{12} \right| \right|$

(2) [12 pts]

(a) Find a vector parametric equation for the line through the point (1, 2, -1) that is normal to the plane 2x - y + 3z = 12.

where
$$\vec{\tau}_0 = (1, 2, -1)$$
 is point on line $\vec{\tau} = \text{vector}$ in direction of line

= norml to place = (2,-1,3)

which read off from coefficients of 2x-y+32=12.

(b) Find a parametrization of the plane containing the point (1, -2, 1), (2, -1, 0) and (3, -2, 2).

b) Find a parametrization of the plane containing the point
$$(1, -2, 1)$$
, $(2, -1, 0)$ and $(3, -1, 0)$

(3) [12 pts] Consider the quadric surface

$$z^2 = x^2 + 4y^2.$$

Find the equations for the slices (i.e., traces) of this surface in the planes x = k, y = k, z = k for a few appropriately chosen values of k. Sketch each of these traces in a plane. Then sketch the surface in space.

x = 0 $z = y^2$ $z = \pm 2y$

y=0 =2= x2

2 =0 52 +4y2 =0

Z= ±1 x2+ 4y2=1

Z=±2 x2+4y2=4

of these traces in a prane.

*

٦٥

Ellipse Die

7 ×

Double Elliptical

(4) [10 pts]

(a) Convert the point (x, y, z) = (1, -1, 1) in rectangular coordinates to spherical coordinates. [Hint: You may find it helpful to draw a picture.]

(a) $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$
$\vec{a} \times \vec{j} = \vec{k}$ We know $ \vec{a} \times \vec{j} = \vec{a} \vec{a} $
$\vec{J} \times \vec{l} = -\vec{k}$ $= \vec{r} \vec{m} \text{ and }$ $= \vec{r} \times \vec{m} $
C NOT ALWAYS TRUE
In fact by hight Had had had $\tilde{u} \times \tilde{v} = -\tilde{v} \times \tilde{u}$ (b) $(u \times v) \cdot u = 0$
11x v + 12. => 0 = 17/2
So $(\vec{u} \times \vec{r}) \cdot \vec{u} = \vec{u} \times \vec{r} \vec{u} e \vec{\omega} \theta$
ALWAYS TRUE
(c) $\mathbf{u} \times \mathbf{u} = \mathbf{u} ^2$ NEVER TRUE
ux u 1s a rector (It is 5)
But 1412 so a scalar (H con be + 0)

(5) [6 pts] Which of the following statements are always true and which are not always true. Give reasons

 ${\bf Pledge:}\ I\ have\ neither\ given\ nor\ received\ aid\ on\ this\ exam$

Signature:			
Sign affire.			
Digitaluic.			

for your answers.