NAME:

1	$/ 8$	2	$/ 9$	3	$/ 9$	4	$/ 12$	5	$/ 12$

MATH 251 (Fall 2009) Exam II, Oct 30th

No calculators, books or notes! Show all work and give complete explanations. This is 65 min exam is worth 50 points.
(1) [8 pts] Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the parametrized curve

$$
\mathbf{r}(t)=\left(t^{2}, e^{3 t}, \cos (4 t)\right)
$$

and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a function such that

$$
\begin{aligned}
f(0,1,1) & =5 \\
\nabla f(0,1,1) & =2 \mathbf{i}-5 \mathbf{j}+7 \mathbf{k}
\end{aligned}
$$

$$
f(0,3,0)=-2
$$

$$
\nabla f(0,3,0)=-\mathbf{i}+6 \mathbf{j}-3 \mathbf{k}
$$

Let $g(t)=f(\mathbf{r}(t))$. Find $g^{\prime}(0)$.
(2) $[9 \mathrm{pts}]$
(a) Set up but do not evaluate an integral to calculate the length of the parametrized curve

$$
\mathbf{r}(t)=\left(t^{2}, e^{3 t}, \cos (4 t)\right), \quad 0 \leq t \leq \pi
$$

That is, find numbers a and b and a function F so that the length of the curve is given by $\int_{a}^{b} F(t) d t$.
(b) Calculate the curvature of the parametrized curve $\mathbf{r}(t)=\left(3+2 t, 5-t^{2}\right)$ at $t=0$.
(3) [9 pts] Let $z=f(x, y)$ be a function with table of values given by

		y		
		4	5	6
x	0	7	8	5
	1	6	9	12
	2	11	15	

Estimate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(x, y)=(1,5)$. Use your answer to estimate the directional derivative of f in the direction $\theta=\pi / 3$ at the point $(1,5)$.
(4) $[12 \mathrm{pts}]$
(a) Sketch and describe the surface with parametrization

$$
x=r \cos \theta, \quad y=1-r(\cos \theta+2 \sin \theta), \quad z=r \sin \theta
$$

where $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 3$.
(b) For the surface given in (a), calculate the tangent vector to the grid curve $r=2$ when $\theta=\pi / 4$.
(5) [12 pts] Find the absolute maximum and minimum of the function $z=f(x, y)=(x+1)^{2}+y^{2}$ on the domain $x^{2}+4 y^{2} \leq 4$.

Pledge: I have neither given nor received aid on this exam
Signature:

