NAME:

1	$/ 10$	2	$/ 10$	3	$/ 10$	4	$/ 10$	5

MATH 251 (Fall 2009) Exam III, Nov 25th
No calculators, books or notes! Show all work and give complete explanations. This is 65 min exam is worth 50 points.
(1) [10 pts] Calculate $\iint_{D} x d A$, where D is the triangle in the $x y$-plane with vertices $(0,0),(1,0)$, and $(1,2)$.
(2) $[10 \mathrm{pts}]$ Evaluate the integral

$$
\int_{x=0}^{x=2} \int_{y=-\sqrt{4-x^{2}}}^{y=+\sqrt{4-x^{2}}} x d y d x
$$

by converting it to polar coordinates.
(3) $[10 \mathrm{pts}]$ Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=x y \mathbf{i}+3 z \mathbf{j}+y \mathbf{k}$ and let C be the curve parametrized by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\mathbf{k}$, where $0 \leq t \leq 1$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(4) [10 pts] Consider the two vector fields

$$
\begin{aligned}
& \mathbf{F}_{1}(x, y)=\left(2 x y-2 y^{2} \sin x\right) \mathbf{i}+\left(x^{2}+4 y \cos x\right) \mathbf{j} \\
& \mathbf{F}_{2}(x, y)=\left(2 x y^{2}-2 y \sin x\right) \mathbf{i}+\left(x^{2}+4 y^{2} \cos x\right) \mathbf{j}
\end{aligned}
$$

One of these vector fields is conservative.
(a) Which vector field is conservative and which is not? Why?
(b) For the vector field that is conservative, evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any curve from $(0,0)$ to $(0,1)$.
(5) $[10 \mathrm{pts}]$ Find a double integral equal to the volume of the solid bounded by the surfaces $y=x, x=2$, $z=0$, and $z=y$, and evaluate this integral.

Pledge: I have neither given nor received aid on this exam
Signature:

