NAME:

1	$/ 10$	2	$/ 10$	3	$/ 8$	4	$/ 14$	5	18

MATH 251 (Fall 2010) Exam I, Sept 23rd

No calculators, books or notes! Show all work and give complete explanations. This 65 min exam is worth 50 points.
(1) [10 pts$]$ Let $\mathbf{u}=(6,0,8)$ and $\mathbf{v}=(1,-2,3)$ be two vectors in space.
(a) Calculate the vector projection, $\operatorname{Proj}_{\mathbf{v}}(\mathbf{u})$, of the vector \mathbf{u} onto the vector \mathbf{v}.
(b) Find a vector that is perpendicular to both \mathbf{u} and \mathbf{v}.
(2) $[10 \mathrm{pts}]$
(a) Find a parametrization of the plane that contains both the point $(2,4,6)$ and the line $x=7-3 t$, $y=3+4 t, z=5+2 t$.
(b) Find a level set equation (i.e., an equation of the form $a x+b y+c z=d$) for the plane in (a).
(3) [8 pts] Let P be the point in space with spherical coordinates $(\rho, \theta, \phi)=\left(3, \frac{\pi}{4}, \frac{2 \pi}{3}\right)$. Sketch P and convert P to both rectangular and cylindrical coordinates.
(4) $[14 \mathrm{pts}]$ Find the traces (i.e., slices) of the surface

$$
x^{2}=1+\frac{y^{2}}{4}+\frac{z^{2}}{9}
$$

in the planes $y=0, z=0$, and $x=k$, for $k=0, \pm 1, \pm 2, \pm 3$. Then sketch the surface and name it.
(5) [8 pts] The Parallelogram Law states that, for any vectors \mathbf{u} and \mathbf{v},

$$
|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2}=2|\mathbf{u}|^{2}+2|\mathbf{v}|^{2} .
$$

(a) Give a geometrical interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law using vector algebra. [Hint: Use $|\mathbf{u}+\mathbf{v}|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})$ together with the distributive law for the dot product.]

