1	$/ 6$	2	$/ 12$	3	$/ 10$	4	$/ 12$	5	$/ 10$

MATH 251 (Fall 2010) Exam II, Oct 21st

No calculators, books or notes! Show all work and give complete explanations. This 65 min exam is worth 50 points.
(1) $[6 \mathrm{pts}]$ Suppose that

$$
x=3 u+2 v, \quad y=4 u-5 v
$$

and let $z=f(x, y)$ be a function so that

(a, b)	$f(a, b)$	$\frac{\partial f}{\partial x}(a, b)$	$\frac{\partial f}{\partial y}(a, b)$
$(1,2)$	5	6	4
$(7,-6)$	-1	-5	7

Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ at $(u, v)=(1,2)$.
(2) $[12 \mathrm{pts}]$
(a) Sketch the parametrized curve $(x, y)=r(t)=(2 \sin t, 3 \cos t)$ for $0 \leq t \leq \pi$.
(b) Sketch the level curves of the function $z=f(x, y)=x-e^{y}$ at levels $k=-1, k=0$, and $k=1$. Also calculate the gradient of f at the origin, add it to your sketch, and explain how it is related to the level curve that passes through the origin.
(3) [10 pts] Let $z=f(x, y)=x^{2}+y^{3}+4 x y$.
(a) Suppose that the function $z=f(x, y)$ is temperature at the point (x, y) in the plane. Suppose that a stink bug is walking at constant speed in this plane. In what direction should the stink bug walk from the point $(x, y)=(-1,2)$ to decrease its temperature the fastest?
(b) Find the rate of change of f at the point $(x, y)=(-1,2)$ in the direction of the vector $2 \mathbf{i}+3 \mathbf{j}$.
(c) Find a vector that is tangent to the level curve $x^{2}+y^{3}+4 x y=1$ at the point $(x, y)=(-1,2)$.
(4) [12 pts] Let S be the surface parametrized by

$$
\mathbf{r}(u, v)=(1+\cos u, \sin u, v) \quad 0 \leq u \leq \frac{\pi}{2}, \quad 0 \leq v \leq 4
$$

(a) Find a level-set equation of the form $F(x, y, z)=0$ that is satisfied by all points on S.
(b) Calculate the tangent vectors to the grid curves $u=\pi / 4$ and $v=2$ at the point $\mathbf{r}(\pi / 4,2)$.
(c) Sketch S together with the grid curves $u=\pi / 4$ and $v=2$ and their tangent vectors at $\mathbf{r}(\pi / 4,2)$.
(5) $[10 \mathrm{pts}]$ Find all local maxima, local minima, and saddle points of the function $z=f(x, y)=x y e^{y}$.

Pledge: I have neither given nor received aid on this exam

Signature: \qquad

