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MATH 251 (Fall 2010) Exam II, Oct 21st

No calculators, books or notes! Show all work and give complete explanations. This 65 min exam is
worth 50 points.

(1) [6 pts] Suppose that
T = du+2v, y = 4u—5v

and let z = f(z,y) be a function so that
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2) [12 pts)
a) Sketch the parametrized curve (z,y) = r(t) = (2sint,3cost) for 0 <t < 7.
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(b) Sketch the level curves of the function z = f(z,y) =z — e at levels k = —1, £ =0, and k = 1. Also
calculate the gradient of f at the origin, add it to your sketch, and explain how it is related to the level

curve that passes through the origin.
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(3) [10 pts] Let z = f(z,y) = z* + ¢ + 4xy.

(a) Suppose that the function z = f(z,y) is temperature at the point (z,y) in the plane. Suppose
that a stink bug is walking at constant speed in this plane. In what direction should the stink bug walk
from the point (z,y) = (—1,2) to decrease its temperature the fastest?
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(b) Find the rate of change of f at the point (z,y) = (—1,2) in the direction of the vector 2i + 3j.
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(c) Find a vector that is tangent to the level curve 2= ¢% + 42y = 1 at th
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(4) [12 pts] Let S be the surface parametrized by

0<v <4

T

r(u,v) = (l+cosuy,sinu,v) 0<Zu<;,

(a) Find a level-set equation of the form F(z,y,z) = 0 that is satisfied by all points on 5.
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(b) Calculate the tangent vectors to the grid curves u = 7/4 and v = 2 at the point r(r/4,2).
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(c) Sketch S together with the grid curves u = 7/4 and v = 2 and their tangent vectors at r(7/4,2).
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[10 pts] Find all local maxima, local minima, and saddle points of the function z = f(z,y) = zye?.
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Pledge: I have neither given nor received aid on this exam

Signature:




