NAME:

1	$/ 8$	2	$/ 12$	3	$/ 10$	4	$/ 6$	5	$/ 8$

MATH 251 (Fall 2010) Final Exam, Dec 16th

No calculators, books or notes! Show all work and give complete explanations. This 120 min exam is worth 100 points.
(1) [8 pts] Calculate the following limits or show they do not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 y^{2}}{4 x^{2}+7 y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{2+x+y}{1+x^{2}+y^{2}}$
(2) $[12 \mathrm{pts}]$
(a) Calculate the projection of the vector $\mathbf{a}=3 \mathbf{j}$ onto the vector $\mathbf{b}=\mathbf{i}+\mathbf{j}$. Draw a labelled picture that clearly illustrates the relationship between these three vectors.
(b) Find the volume of the parallelipiped determined by the vectors $(1,2,3),(0,1,-4)$, and $(5,0,2)$.
(3) $[10 \mathrm{pts}]$
(a) Find an equation of the form $z=a x+b y+c$ for the tangent plane to the graph of $z=f(x, y)=3 x^{2}+5 y^{2}$ at the point $(x, y, z)=(1,2,23)$.
(b) Calculate $\iint_{D} y^{2} d A$, where D is the region in the $x y$-plane bounded by the curves $y^{2}=x$ and $x+y^{2}=8$.
(4) [6 pts] Calculate the length of the curve $\mathbf{r}(t)=(4 t, 3 \cos t, 3 \sin t)$ for $0 \leq t \leq \pi$.
(5) [8 pts] An anemometer is an instrument that measures wind speed. Suppose that $\mathbf{F}(x, y)=y \mathbf{i}+2 x \mathbf{j}$ is the velocity vector field of air moving across the $x y$-plane. Suppose an ant that is carrying an anemometer is at the point $\mathbf{p}=(-1,4)$ and is walking with velocity $\mathbf{v}=(2,3)$. Is the wind speed measured by the anemometer increasing or decreasing?
(6) [12 pts] Sketch the following.
(a) The surface $\theta=\frac{-\pi}{4}$
(b) The surface $\phi=\frac{5 \pi}{6}$ for $0 \leq \theta \leq 2 \pi$ and $1 \leq \rho \leq 2$.
(c) The solid region $0 \leq \theta \leq \frac{\pi}{2}, r^{2} \leq z \leq 2$.
(7) [12 pts] Find the absolute maximum and minimum of the function $f(x, y)=2 x^{2}+y^{2}-2 x y-2 x$ on the rectangular region bounded by the lines $x=0, y=0, x=2$, and $y=3$.
(8) $[12 \mathrm{pts}]$
(a) Carefully state the Divergence Theorem. You may find it helpful to draw a picture and refer to it in your written explanation.
(b) Let S be the surface $x^{2}+y^{2}+z^{2}=4$ with the outward orientation, and let \mathbf{F} be the vector field $\mathbf{F}=x z^{2} \mathbf{i}+\sin (z) \mathbf{j}+x y \mathbf{k}$. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
(9) [10 pts] Find the volume of the solid region bounded by the surfaces $x^{2}+z^{2}=1,2 y+z=8$, and $x+y=1$.
(10) [10 pts] Let S be the surface that is the portion of the paraboloid $y=x^{2}+z^{2}$ with $0 \leq y \leq 4$. We choose the unit normal \mathbf{n} on S to be the one with $\mathbf{n} \cdot \mathbf{j}>0$. Let $\mathbf{F}(x, y, z)=x \mathbf{i}+z \mathbf{k}$. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$. [Hint: Define parameters for S in terms of polar coordinates in the $x z$-plane.]
\qquad

