NAME:

1	$/ 8$	2	$/ 10$	3	$/ 12$	4	$/ 12$	5	18

MATH 251 (Fall 2011) Exam I, Sept 29th

No calculators, books or notes! Show all work and give complete explanations. This 65 min exam is worth 50 points.
(1) [8 pts] Let \mathbf{u} be a unit vector in the $x y$-plane. Think of \mathbf{u} as a vector that starts at the origin. Let \mathbf{v} be the vector obtained by rotating \mathbf{u} clockwise about the origin by 60°. Let $\mathbf{w}=\mathbf{v}-\mathbf{u}$.
(a) Draw a sketch that illustrates how the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} are related.
(b) Use the geometric (physics) definitions of the dot product and cross product to find (i) $\mathbf{u} \cdot \mathbf{v}$ (ii) $\mathbf{u} \cdot \mathbf{w}$ and (iii) $\mathbf{u} \times \mathbf{v}$.
(2) $[10 \mathrm{pts}]$
(a) Find a vector parametrization of the line obtained by intersecting the planes $x+2 y+3 z=1$ and $x-y+z=2$.
(b) Find a vector parametrization of the plane $x+2 y+3 z=6$.
(3) [12 pts] Let L_{1} and L_{2} be lines in space with parametrizations

$$
x=1+2 t \quad y=2+t \quad z=-4+t
$$

and

$$
x=1+5 t \quad y=2+2 t \quad z=-4 .
$$

(a) Using a schematic diagram and an English sentence, explain why L_{1} and L_{2} lie in a plane, P.
(b) Find a vector parametrization of the plane P.
(c) Find a level set equation of the plane P.
(4) $[12 \mathrm{pts}]$ Find the traces (i.e., slices) of the surface

$$
-x^{2}+4 y^{2}-9 z^{2}=4
$$

in the planes $x=0, z=0$, and $y=k$, for $k=0, \pm 1, \pm 2$. Then sketch the surface.
(5) [8 pts] Which of the following expressions are meaningful? Which are meaningless? Explain! (Here a, \mathbf{b}, \mathbf{c}, and \mathbf{d} are vectors in space.)
(a) $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$
(b) $(\mathbf{a} \cdot \mathbf{b})+\mathbf{c}$
(c) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
(d) $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})$

Pledge: I have neither given nor received aid on this exam
Signature: \qquad

