NAME:

1	$/ 8$	2	$/ 10$	3	$/ 10$	4	$/ 12$	5	$/ 10$

MATH 251 (Fall 2011) Exam III, Nov 22nd

No calculators, books or notes! Show all work and give complete explanations. This 65 min exam is worth 50 points.
(1) [8 pts] Let C be the straight line segment in the $x y$-plane from the point $(1,2)$ to the point $(5,3)$. Let \mathbf{F} be the vector field in the plane defined by $\mathbf{F}(x, y)=\frac{1}{2}(x \mathbf{i}+y \mathbf{j})$.
(a) Make a sketch showing the vector $\mathbf{F}(x, y)$ at three points (x, y) on C. Using your sketch, determine whether $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is positive, negative, or zero. Explain!
(b) Now calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(2) $[10 \mathrm{pts}]$
(a) Let D be the half-disc in the $x y$-plane given by $x^{2}+y^{2} \leq 9$ and $x \geq 0$. Calculate $\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d A$.
(b) Let D be the region in the first quadrant (i.e., $x \geq 0$ and $y \geq 0$) of the $x y$-plane that is bounded by the y axis and the curves $y=\sin x$ and $y=\cos x$, and such that $x \leq \pi / 4$. Calculate $\iint_{D} y d A$.
(3) [10 pts] Let $\mathbf{r}(t)=(2 \cos t, 3 \sin t)$, for $0 \leq t \leq 2 \pi$, and let $(u, v)=F(x, y)=\left(3 x+2 y, x^{2}+5 y^{2}\right)$. The composition $\mathbf{s}(t)=F(\mathbf{r}(t))$ is a curve in the plane. Use the Chain Rule from Multivariable Calculus to answer the following two questions.
(a) At which times, t, is the tangent vector to the curve $(u, v)=\mathbf{s}(t)$ vertical?
(b) For each of the times you found in (a), is the tangent vector pointing in the $+\mathbf{j}$ or $-\mathbf{j}$ direction?
(4) [12 pts] Let $z=f(x, y)=x^{3}-12 x y+8 y^{3}$.
(a) Find a tangent vector to the level curve $f(x, y)=5$ at the point $(x, y)=(1,-1)$.
(b) Find all local maxima, local minima, and saddle points of f.
(5) $[10 \mathrm{pts}]$ Let $z=f(x, y)$ be a function such that

(x, y)	$(2,1)$	$(-2,-1)$	$(0, \sqrt{3})$	$(\sqrt{3}, 0)$
$\frac{\partial f}{\partial x}$	-10	10	0	4
$\frac{\partial f}{\partial y}$	-2	4	0	-3

Which of the (x, y) values in this table are candidates for the absolute maximum and absolute minimum of f on the curve $2 x^{2}-3 x y+4 y^{2}=6$? Carefully justify your answers!

Pledge: I have neither given nor received aid on this exam

Signature:

