

MATH 251 (Fall 2011) Exam III, Nov 22nd

No calculators, books or notes! Show all work and give **complete explanations**. This 65 min exam is worth 50 points.

(1) [8 pts] Let C be the straight line segment in the xy-plane from the point (1, 2) to the point (5, 3). Let **F** be the vector field in the plane defined by $\mathbf{F}(x, y) = \frac{1}{2}(x\mathbf{i} + y\mathbf{j})$.

(a) Make a sketch showing the vector $\mathbf{F}(x, y)$ at three points (x, y) on C. Using your sketch, determine whether $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero. Explain!

(b) Now calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

(2) [10 pts]

(a) Let D be the half-disc in the xy-plane given by $x^2 + y^2 \le 9$ and $x \ge 0$. Calculate $\iint_D e^{-(x^2+y^2)} dA$.

(b) Let D be the region in the first quadrant (i.e., $x \ge 0$ and $y \ge 0$) of the xy-plane that is bounded by the y axis and the curves $y = \sin x$ and $y = \cos x$, and such that $x \le \pi/4$. Calculate $\iint_D y \, dA$.

(3) [10 pts] Let $\mathbf{r}(t) = (2\cos t, 3\sin t)$, for $0 \le t \le 2\pi$, and let $(u, v) = F(x, y) = (3x + 2y, x^2 + 5y^2)$. The composition $\mathbf{s}(t) = F(\mathbf{r}(t))$ is a curve in the plane. Use the *Chain Rule from Multivariable Calculus* to answer the following two questions.

(a) At which times, t, is the tangent vector to the curve $(u, v) = \mathbf{s}(t)$ vertical?

(b) For each of the times you found in (a), is the tangent vector pointing in the $+\mathbf{j}$ or $-\mathbf{j}$ direction?

- (4) [12 pts] Let $z = f(x, y) = x^3 12xy + 8y^3$.
- (a) Find a tangent vector to the level curve f(x, y) = 5 at the point (x, y) = (1, -1).

(b) Find all local maxima, local minima, and saddle points of f.

(5) [10 pts] Let z = f(x, y) be a function such that

(x,y)	(2,1)	(-2, -1)	$(0,\sqrt{3})$	$(\sqrt{3}, 0)$
$\frac{\partial f}{\partial x}$	-10	10	0	4
$rac{\partial f}{\partial y}$	-2	4	0	-3

Which of the (x, y) values in this table are candidates for the absolute maximum and absolute minimum of f on the curve $2x^2 - 3xy + 4y^2 = 6$? Carefully justify your answers!

Pledge: I have neither given nor received aid on this exam

Signature: _____