NAME:

1	$/ 15$	2	$/ 15$	3	$/ 17$	4	$/ 18$	5

MATH 251H (Fall 2006) Exam 1, Sept 27th

No calculators, books or notes!
Show all work and give complete explanations for all your answers.
This is a 75 minute exam. It is worth a total of 75 points.
(1) $[15 \mathrm{pts}]$ Suppose that

$$
\mathbf{r}(s, t)=(1+2 s-3 t, 5+s,-3+4 s-t)
$$

is a parametrization of a plane. Find a level set equation for this plane, i.e., an equation of the form

$$
a x+b y+c z=d .
$$

(2) [15 pts] Consider the parametrized curve $\mathbf{r}(t)=t \mathbf{i}+\frac{\sqrt{2}}{2} t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}$.
(a) Find a parametrization for the tangent line to this curve at $t=1$.
(b) Calculate the arclength function of the curve \mathbf{r} starting from $t=0$.
(3) [17 pts] Show that the parametrized curve $\mathbf{r}(t)=(\cos t, \sin t, 1)$ lies on the following two surfaces:
(i) $\rho=\sqrt{2}$ (in spherical coordinates)
(ii) $z=r$ (in cylindrical coordinates).

Also sketch both surfaces and the curve in the same figure.
(4) [18 pts] Find the traces (i.e., slices) of the surface

$$
-x^{2}+4 y^{2}-z^{2}=4
$$

in the planes $x=0, z=0$, and $y=k$ for $k=0, \pm \frac{1}{2}, \pm 1, \pm 2$, and ± 3, Also sketch the surface and name it.
(5) [10 pts] Use the geometric definitions of the dot product and the cross product to show that the volume of the parallelipiped determined by the three vectors \mathbf{u}, \mathbf{v} and \mathbf{w} is $|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$.

Pledge: I have neither given nor received aid on this exam

Signature:

