NAME:

MATH 251H (Fall 2006) Exam 2, Oct 27th
No calculators, books or notes!
Show all work and give complete explanations for all your answers.
This is a 75 minute exam. It is worth a total of 75 points.
(1) $[15 \mathrm{pts}]$ Either compute the following limits or show they do not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-3 y^{2}}{4 x^{2}+5 y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}}$
(2) [20 pts] Let f be the function $z=f(x, y)=x^{2}-x y+y^{2}+3 x$.
(a) Calculate an equation of the form $z=a x+b y+c$ for the tangent plane to the surface $z=f(x, y)$ at the point $(x, y, z)=(2,3,13)$.
(b) Find and classify all critical points of f.
(c) Find the absolute maximum and minimum of f on the region in the $x y$-plane bounded by the lines $x=0, y=1$, and $x+y=-4$.
(3) $[15 \mathrm{pts}]$
(a) Use equations to explain why $\mathbf{r}(u, v)=(u \cos v, u \sin v, u)$, where $u \geq 0$ and $0 \leq v \leq 2 \pi$, is a parametrization of a cone.
(b) Plot the $u=$ constant and $v=$ constant grid curves on a picture of the cone and label them.
(c) Carefully describe what happens to the parametrization and the surface when $u=0$.
(d) Using the parametrization in (a), calculate a parametrization of the tangent plane to the cone at $(u, v)=(2, \pi / 6)$.
(4) [8 pts] Suppose that the directional derivative of a function $w=f(x, y, z)$ at a point P is greatest in the direction of the vector $\mathbf{v}=(1,1,-1)$, and that in this direction the value of the directional derivative is $2 \sqrt{3}$.
(a) What is ∇f at P, and why?
(b) What is the directional derivative of f in the direction of the vector $(1,1,0)$?
(5) [10 pts] Suppose that $g(t)=f(\mathbf{r}(t))$, where \mathbf{r} is the curve $\mathbf{r}(t)=(\cos t, \sin t, t)$ and

$$
\frac{\partial f}{\partial x}=x \quad \frac{\partial f}{\partial y}=y \quad \frac{\partial f}{\partial z}=z-2 .
$$

Find any local maxima and minima of g. (Do not find a formula for f.)
(6) [7 pts] If $z=f(x, y)$, where $x=r \cos \theta$ and $y=r \sin \theta$, use the Chain Rule to prove that

$$
\frac{\partial z}{\partial \theta}=x \frac{\partial z}{\partial y}-y \frac{\partial z}{\partial x}
$$

and

$$
r \frac{\partial z}{\partial r}=x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}
$$

Pledge: I have neither given nor received aid on this exam

