1	$/ 10$	2	$/ 12$	3	$/ 15$	4	$/ 10$	5	$/ 14$	6	$/ 14$

MATH 251H (Fall 2006) Exam 3, Nov 22nd

No calculators, books or notes!
Show all work and give complete explanations for all your answers.
This is a 75 minute exam. It is worth a total of 75 points.
(1) $[10 \mathrm{pts}]$
(a) Find the divergence of the vector field $\mathbf{F}(x, y, z)=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j}+z \mathbf{k}$.
(b) Let \mathbf{F} be the vector field $\mathbf{F}(x, y)=x^{2} \cos (y) \mathbf{i}+y \sin (x) \mathbf{j}$ and let C be the curve in the plane given by $y=x^{3}$ from $(0,0)$ to $(2,8)$. Find a formula for a function g so that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2} g(t) d t$.
(2) [12 pts] Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=\left(2 x y-\sin x \sin y+e^{x}\right) \mathbf{i}+\left(x^{2}+\cos x \cos y\right) \mathbf{j}$ and where C is any curve from $(0,0)$ to $(2,3)$.
(3) [15 pts] Calculate the volume of the solid enclosed by the parabolic cylinders $z=x^{2}, y=x^{2}$ and the planes $z=0$ and $y=4$.
(4) [10 pts] Calculate the integral $\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.
(5) [14 pts] Use the Method of Lagrange Multipliers to find the absolute maximum of the function $f(x, y)=(x-y)^{3}$ subject to the constraint $x^{2}+y^{2}=1$.
(6) [14 pts] Carefully state Green's Theorem and use it to calculate the integral

$$
\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y
$$

where C is the positively-oriented boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.

