NAME:														
1		10	2 /	12	3	/15	4 /1	10	5	/14	6	/14	Т	/75

MATH 251H (Fall 2006) Exam 3, Nov 22nd

No calculators, books or notes!

Show all work and give **complete explanations** for all your answers.

This is a 75 minute exam. It is worth a total of 75 points.

(1) [10 pts]

(a) Find the divergence of the vector field $\mathbf{F}(x, y, z) = e^x \sin y \, \mathbf{i} + e^x \cos y \, \mathbf{j} + z \, \mathbf{k}$.

(b) Let **F** be the vector field $\mathbf{F}(x, y) = x^2 \cos(y) \mathbf{i} + y \sin(x) \mathbf{j}$ and let *C* be the curve in the plane given by $y = x^3$ from (0,0) to (2,8). Find a formula for a function *g* so that $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^2 g(t) dt$.

(2) [12 pts] Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = (2xy - \sin x \sin y + e^x) \mathbf{i} + (x^2 + \cos x \cos y) \mathbf{j}$ and where C is any curve from (0, 0) to (2, 3).

(3) [15 pts] Calculate the volume of the solid enclosed by the parabolic cylinders $z = x^2$, $y = x^2$ and the planes z = 0 and y = 4.

(4) [10 pts] Calculate the integral $\iint_D e^{-x^2-y^2} dA$, where D is the region bounded by the semicircle $x = \sqrt{4-y^2}$ and the y-axis.

(5) [14 pts] Use the Method of Lagrange Multipliers to find the absolute maximum of the function $f(x, y) = (x - y)^3$ subject to the constraint $x^2 + y^2 = 1$.

(6) [14 pts] Carefully state Green's Theorem and use it to calculate the integral

$$\int_C (y + e^{\sqrt{x}})dx + (2x + \cos(y^2))dy,$$

where C is the positively-oriented boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.

Pledge: I have neither given nor received aid on this exam

Signature: