MATH 251H (Fall 2003) Exam 1, Oct 6th

No calculators, books or notes!
Show all work and give complete explanations for all your answers.
This is a 65 minute exam. It is worth a total of 75 points.
(1) $[10 \mathrm{pts}]$ Let \mathbf{u} and \mathbf{v} be two vectors in the $x y$-plane, with lengths $|\mathbf{u}|=\mathbf{5}$ and $|\mathbf{v}|=\mathbf{1 0}$, and

(a) Find $\mathbf{u} \bullet \mathbf{v}=$
(b) Find $\mathbf{u} \times \mathbf{v}=$
(c) Find the length of the projection of \mathbf{u} onto \mathbf{v}
(d) How are dot products useful?
(2) $[15 \mathrm{pts}]$
(a) Find a parameterization of the plane through the points $P=(1,2,3), Q=(4,-1,2)$, and $R=(2,0,-5)$.
(b) Does the line through the points $(2,-2,-1)$ and $(3,-1,0)$ intersect the plane that goes through the point $(0,0,2)$ and is perpendicular to the vector $(2,-3,1)$?
(3) $[16 \mathrm{pts}]$
(a) Find the traces (slices) of the surface $z=3 x^{2}+y^{2}$ in the $x z$-plane, the $y z$-plane, and the planes $z=0$ and $z=1$. Then sketch the graph of the surface.
(b) Identify the surface $\rho=4 \sin \phi \cos \theta$.
(4) [12 pts] Let $\mathbf{r}(t)$ be the helix $\mathbf{r}(t)=(\cos (2 t), \sin (2 t), 5 t)$.
(a) Compute the parametric equation of the tangent line to this helix at $t=\pi$.
(b) Compute the arclength of the helix from $t=0$ to $t=\pi$.
(c) Compute the curvature of \mathbf{r}
(5) [12 pts] Match the equations (a)-(d) with the graphs labeled (I)-(IV). Give reasons for your choices.
(a) $x=t^{3}, \quad y=t, \quad z=t^{2}$
(b) $x=t \sin (2 t), \quad y=t \cos (2 t), \quad z=t$
(c) $x=\cos (t), \quad y=\sin (4 t), \quad z=\sin (t)$
(d) $x=t^{2}, \quad y=t^{2}, \quad z=t$

(6) $[10 \mathrm{pts}]$ Suppose $\mathbf{u} \neq \mathbf{0}$. Are the following statements true or false? For each part, either give an example of vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} for which the statement is false, or prove that the statement is true.
(a) If $\mathbf{u} \bullet \mathbf{v}=\mathbf{u} \bullet \mathbf{w}$ then $\mathbf{v}=\mathbf{w}$.
(b) If $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ then $\mathbf{v}=\mathbf{w}$.
(c) If $\mathbf{u} \bullet \mathbf{v}=\mathbf{u} \bullet \mathbf{w}$ and $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ then $\mathbf{v}=\mathbf{w}$.

Pledge: I have neither given nor received aid on this exam

Signature:

