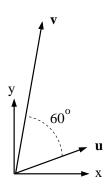
MATH 251H (Fall 2003) Exam 1, Oct 6th

No calculators, books or notes!

Show all work and give **complete explanations** for all your answers. This is a 65 minute exam. It is worth a total of 75 points.

(1) [10 pts] Let **u** and **v** be two vectors in the xy-plane, with lengths $|\mathbf{u}| = \mathbf{5}$ and $|\mathbf{v}| = \mathbf{10}$, and



(a) Find $\mathbf{u} \bullet \mathbf{v} =$

(b) Find $\mathbf{u} \times \mathbf{v} =$

- (c) Find the length of the projection of \mathbf{u} onto \mathbf{v}
- (d) How are dot products useful?

(2) [15 pts] (a) Find a parameterization of the plane through the points P = (1, 2, 3), Q = (4, -1, 2), and R = (2, 0, -5).

(b) Does the line through the points (2, -2, -1) and (3, -1, 0) intersect the plane that goes through the point (0, 0, 2) and is perpendicular to the vector (2, -3, 1)?

(3) [16 pts]

(a) Find the traces (slices) of the surface $z = 3x^2 + y^2$ in the *xz*-plane, the *yz*-plane, and the planes z = 0 and z = 1. Then sketch the graph of the surface.

(b) Identify the surface $\rho = 4 \sin \phi \cos \theta$.

(4) [12 pts] Let $\mathbf{r}(t)$ be the helix $\mathbf{r}(t) = (\cos(2t), \sin(2t), 5t)$.

(a) Compute the parametric equation of the tangent line to this helix at $t = \pi$.

(b) Compute the arclength of the helix from t = 0 to $t = \pi$.

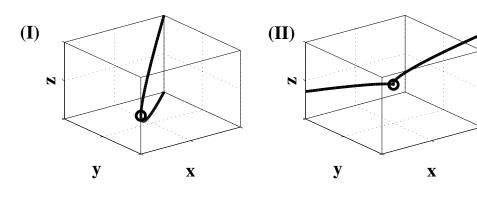
(c) Compute the curvature of ${\bf r}$

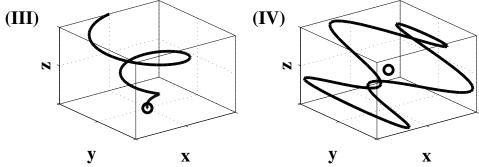
(5) [12 pts] Match the equations (a)-(d) with the graphs labeled (I)-(IV). Give reasons for your choices. (a) $x = t^3$, y = t, $z = t^2$

(b) $x = t \sin(2t), \quad y = t \cos(2t), \quad z = t$

(c)
$$x = \cos(t), \quad y = \sin(4t), \quad z = \sin(t)$$

(d)
$$x = t^2$$
, $y = t^2$, $z = t$





(6) [10 pts] Suppose $\mathbf{u} \neq \mathbf{0}$. Are the following statements true or false? For each part, either give an example of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} for which the statement is false, or prove that the statement is true.

(a) If $\mathbf{u} \bullet \mathbf{v} = \mathbf{u} \bullet \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$.

(b) If $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$.

(c) If $\mathbf{u} \bullet \mathbf{v} = \mathbf{u} \bullet \mathbf{w}$ and $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$.

Pledge: I have neither given nor received aid on this exam

Signature: _____