MATH 251H (Fall 2003) Exam 3, Nov 26th

No calculators, books or notes! Show all your work. This 65 minute exam is worth 75 points.
(1) [8 pts] A contour map is shown for a function f on the square $R=[0,4] \times[0,4]$. Use the midpoint rule with $\Delta x=\Delta y=2$ to estimate the value of $\iint_{R} f(x, y) d A$.
(2) [12 pts] Let D be the domain in the plane bounded by $y=0, y=x^{2}$, and $x=1$. Evaluate $\iint_{D} x e^{y} d A$.
(3) [10 pts] Evaluate $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x$.
(4) $[12 \mathrm{pts}]$ Let E be the solid tetrahedron with vertices $(0,0,0),(2,0,0),(2,1,0)$, and $(0,1,1)$. Set up, but do NOT evaluate, an iterated triple integral for $\iiint_{E} x z d V$.
(5) [10 pts] Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
(6) $[15 \mathrm{pts}]$
(a) State the Change of Variables Theorem for Double Integrals, and, using a picture, explain the geometric meaning of the Jacobian, $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$.
(b) Use the transformation $u=x-y, v=x+y$, to evaluate $\iint_{D} \frac{x-y}{x+y} d A$, where D is the square with vertices $(0,2),(1,1),(2,2)$, and $(1,3)$.
(7) $[8 \mathrm{pts}]$ Sketch the vector field $\mathbf{F}=\frac{x \mathbf{i}-y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}$.

Pledge: I have neither given nor received aid on this exam

Signature:

