NAME:

1	$/ 15$	2	$/ 15$	3	$/ 15$	4	$/ 20$	5

MATH 251 (Spring 2008) Exam 2, Mar 31st

No calculators, books or notes! Show all work and give complete explanations.
This 65 minute exam is worth a total of 75 points.
(1) $[15 \mathrm{pts}]$
(a) Find the curvature of the unit speed curve

$$
\mathbf{r}(s)=(1+\cos (s / 2), \sqrt{3} \cos (s / 2), 2 \sin (s / 2))
$$

(b) The curve in (a) is a circle. What is the radius of this circle, and why?
(2) [15 pts] Carefully sketch the level curves of the function $z=f(x, y)=x^{2}-4 y^{2}$ at levels $z=0, \pm 1$, ± 2. Each level curve should be labeled and all should be drawn to scale on the same set of axes.
(3) $[15 \mathrm{pts}]$ Find all local maxima, local minima and saddle points of the function

$$
z=f(x, y)=x^{4}+y^{4}-4 x y+2 .
$$

(4) $[20 \mathrm{pts}]$
(a) Show that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{x^{2}+3 y^{2}} .
$$

(b) Calculate the equation of the tangent plane to the function $z=f(x, y)=x^{3} e^{2 y}$ at the point $(x, y, z)=$ $(2,0,8)$.
(5) [10 pts] A mouse walks around a circle in the $x y$-plane. Suppose that the position of the mouse at time t is given by the parametrized curve $(x, y)=\mathbf{r}(t)=(\cos t, \sin t)$. Let $z=T(x, y)$ be the temperature function in the plane. Suppose that when the mouse is at the point $(x, y)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ it experiences a rate of change of temperature of 5 degrees Fahrenheit per second. Suppose that an ant is also walking at speed 1 centimeter per second, but that unlike the mouse it can walk whereever it wants to in the $x y$-plane. If the ant is at the same point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ as the mouse, in what direction should it walk to decrease the temperature T the fastest if $\frac{\partial T}{\partial x}=-2$ at $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
\qquad

