NAME:

1	$/ 12$	2	$/ 16$	3	$/ 16$	4	$/ 16$	5

MATH 251 (Spring 2008) Exam 3, Apr 23rd

No calculators, books or notes! Show all work and give complete explanations.
This 65 minute exam is worth a total of 75 points.
(1) [12 pts] Let C be the curve in the plane which is parametrized by $\mathbf{r}(t)=(3 t, 4 t+1)$, where $0 \leq t \leq 1$ and let $z=f(x, y)=x y$. Calculate $\int_{C} f d s$.
(2) $[16 \mathrm{pts}]$
(a) Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y)=\left(2 x+e^{x} \cos y\right) \mathbf{i}+\left(3 y^{2}-e^{x} \sin y\right) \mathbf{j} .
$$

Show that \mathbf{F} is conservative on the domain $D=\mathbf{R}^{2}$.
(b) Let C be the curve in the plane which is parametrized by $\mathbf{r}(t)=(\cos t, \sin t)$, where $0 \leq t \leq \pi$ and let \mathbf{F} be the vector field $\mathbf{F}(x, y)=y \mathbf{i}+e^{x} \mathbf{j}$. Find a formula for a function $g(t)$ so that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\pi} g(t) d t
$$

(3) [16 pts] (a) Let D be the region in the plane bounded by the curves $y=1+x^{2}, y=2 x^{2}$. Calculate $\iint_{D} x^{2} d A$.
(b) Let D be the region in the first quadrant (i.e., $x \geq 0$ and $y \geq 0$) that is between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. Calculate $\iint_{D} y d A$.
(4) [16 pts] Let S be the surface in \mathbf{R}^{3} that is parametrized by

$$
\mathbf{r}(u, v)=(v \cos u, v \sin u, v)
$$

where $0 \leq u \leq 2 \pi$ and $v>0$.
(a) Show that S is the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) Use the parametrization $\mathbf{r}(u, v)$ above to calculate a parametrization of the tangent plane to S at the point $\mathbf{r}(\pi / 4,1)$.
(5) [15 pts] Use the Method of Lagrange Multipliers to find the maximum and minimum values of the function $f(x, y)=6 x+8 y$ subject to the constraint $x^{2}+y^{2}=1$.

Pledge: I have neither given nor received aid on this exam
Signature:

