NAME:

1	/14	2	/15	3	/12	4	/12	5	/12 6	/15
7	$/ 10$	8	/10	9	/10	10	/10	T	/120	

MATH 251 (Spring 2008) Final Exam, May 21st
No calculators, books or notes! Show all work and give complete explanations. This 120 minute exam is worth a total of 120 points.
(1) $[14 \mathrm{pts}]$
(a) Find a parametrization of the line through the points $(1,0,1)$ and $(2,1,0)$.
(b) Find the point of intersection of the line in (a) with the plane $x+2 y-2 z+4=0$.
(2) [15 pts] Consider the parametrized curve $\mathbf{r}(t)=(\sin t, 2 t, \cos t)$, where $0 \leq t \leq 2 \pi$.
(a) Show that this curve lies on a cylinder.
(b) Carefully sketch the curve and the cylinder on which it lies.
(c) Reparametrize the curve \mathbf{r} with respect to arclength measured from the point where $t=0$ in the direction of increasing t.
(3) [12 pts] Calculate $\iint_{D} y^{2} d A$, where D is the region in the $x y$-plane that is bounded by the parabolas $x=y^{2}$ and $x+y^{2}=8$.
(4) $[12 \mathrm{pts}]$ Calculate the following:
(a) What is the rate of change of the function $f(x, y, z)=e^{3 x y}+x^{3} z^{4}$ in the direction $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ at the point $(1,0,2)$?
(b) Let $z=f(x, y, z)$ be a function with $f(1,0,0)=5$ and $\nabla f(1,0,0)=(2,6,-1)$ and let $\mathbf{r}(t)=$ $\left(\cos t, t^{5}, 4 \sin t\right)$ be a parametrized curve. If $g(t)=f(\mathbf{r}(t))$ find $g^{\prime}(0)$.
(5) [12 pts] (a) Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=x z \mathbf{i}+y^{2} \mathbf{j}+y \cos z \mathbf{k}$. Calculate $\nabla \times \mathbf{F}$.
(b) Suppose that the vector field $\mathbf{F}(x, y)=x^{2} y \mathbf{i}+\left(x^{2}-y^{2}\right) \mathbf{j}$ is the velocity vector field of a fluid flowing in the $x y$-plane. On average is the fluid flowing in or out of a small disk centered at the point $(-1,2)$? Why?
(6) [15 pts] Suppose that $z=f(x, y)$ is a function whose second partial derivatives are continuous and that

(a, b)	$f(a, b)$	$\nabla f(a, b)$	$f_{x x}(a, b)$	$f_{x y}(a, b)$	$f_{y y}(a, b)$
$(1,2)$	0	$(0,0)$	5	3	1
$(7,-2)$	0	$(0,1)$	5	3	1
$(3,4)$	7	$(0,0)$	-5	-3	-2
$(5,-3)$	68	$(0,0)$	8	-4	2
$(2,1)$	35	$(0,0)$	5	3	2

Identify any local maxima, minima, and saddle points of f. Explain the reasons for your answers.
(7) [10 pts] Let S be the surface $z=9-\frac{1}{4}\left(x^{2}+y^{2}\right)$, where $x^{2}+y^{2} \leq 36$, with the upward orientation. Set up an iterated double integral of the form $\int_{a}^{b} \int_{c}^{d} g(u, v) d u d v$ for the flux of the vector field $\mathbf{F}=y \mathbf{i}+\mathbf{j}+z \mathbf{k}$ through the surface S. In particular find a formula for the integrand $g(u, v)$ and find the endpoints of integration, a, b, c, and d. [Do not evaluate this double integral.]
(8) [10 pts] Calculate $\iiint_{E} x^{2} y^{2} d V$, where E is the solid region bounded by the parabolic cylinder $z=1-y^{2}$ and the planes $z=0, x=1$ and $x=-1$.
(9) $[10 \mathrm{pts}]$
(a) Carefully state Stokes' Theorem.
(b) Use Stokes' Theorem to evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+y z^{2} \mathbf{j}+z^{3} e^{x y} \mathbf{k}, S$ is the part of the sphere $x^{2}+y^{2}+z^{2}=5$ that lies above the plane $z=1$, and S is oriented upwards.
(10) $[10 \mathrm{pts}]$
(a) Carefully state the Change of Variables Theorem for Double Integrals.
(b) Use the Change of Variables Theorem to calculate $\iint_{R} x d A$, where R is the region in the $x y$-plane where $x \geq 0$ and $9 x^{2}+4 y^{2} \leq 36$. [Hint: Use the change of variables $x=2 u, y=3 v$.]

