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Abstract: We present a method to deterministically obtain broad bandwidth frequency combs
in microresonators. These broadband frequency combs correspond to cnoidal waves in the
limit when they can be considered soliton crystals or single solitons. The method relies on
moving adiabatically through the (frequency detuning)×(pump amplitude) parameter space,
while avoiding the chaotic regime. We consider in detail Si3N4 microresonators with small or
intermediate dimensions and an SiO2 microresonator with large dimensions, corresponding to
prior experimental work. We also discuss the impact of thermal effects on the stable regions for
the cnoidal waves. Their principal effect is to increase the detuning for all the stable regions,
but they also skew the stable regions, since higher pump power corresponds to higher power
and hence increased temperature and detuning. The change in the detuning is smaller for single
solitons than it is for soliton crystals. Without temperature effects, the stable regions for single
solitons and soliton crystals almost completely overlap. When thermal effects are included,
the stable region for single solitons separates from the stable regions for the soliton crystals,
explaining in part the effectiveness of backwards-detuning to obtaining single solitons.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Broadband optical frequency combs in which all the frequency modes are coherently locked
make it possible to measure frequency with great accuracy and have enabled a wide range of
applications [1]. These include applications to basic science, astrophysics, environmental and
chemical sensing, medicine, and military technology [2,3]. However, frequency combs are
usually produced using passively modelocked lasers and are often bulky and expensive. It was
discovered in 2007 that it is possible to produce broadband frequency combs in microresonators
[4,5], which are µm-size or mm-size optical rings. This discovery opened up the prospect of
compact, relatively inexpensive frequency combs and led to a worldwide effort to obtain an
octave of bandwidth and lock the frequency combs [6]. Microresonator frequency combs are
produced by a microresonator to which an optical waveguide carrying continuous wave light
is coupled. The light from this waveguide pumps a single resonant frequency mode inside
the microresonator. This mode then parametrically pumps other microresonator modes [7,8],
ultimately creating a broadband comb [9,10]. However, this comb is typically incoherent and
corresponds to a randomly fluctuating optical amplitude inside the microresonator. The most
common approach to generate a coherent comb is to either tune the pump frequency [11–16] or
the pump power [13,17,18]. When successful, this process generates a single (bright) soliton
that circulates in the cavity—corresponding to a coherent comb. However, this process is not
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deterministic. Most of the time it does not produce a single soliton, and the process must be
repeated multiple times until a single soliton is randomly obtained.
This approach has achieved notable successes in recent years. These have included the

demonstration that an octave of bandwidth can be obtained [19], the demonstration of an on-chip
optical frequency synthesizer [20], demonstration of microwave purification [21] and microwave
synthesis [22], and applications to dual-comb spectroscopy [23] and lidar [24,25]. However, this
approach has significant drawbacks. As noted, the single soliton generation is random. Indeed,
recent work has demonstrated that when thermal effects can be neglected there is no path through
the parameter space that can deterministically generate single solitons because continuous waves
and multiple soliton solutions that are soliton crystals co-exist in the parameter space [26].
Another drawback of single solitons is that they use the pump inefficiently. Less than 1% of

the pump power typically goes into the frequency comb [14]. Associated with this drawback is
another; single solitons are thermally unstable unless the device temperature is carefully managed.
When a single soliton is generated, the device cools, and the soliton can become unstable. To
avoid this instability, a feedback control system is required, which adds to the system complexity
[27]. There have been several recent proposals for the deterministic generation of solitons. In one
approach, multiple pump frequencies are used to modulate the input pump amplitude [28–31] or
phase [32]. This approach has been demonstrated experimentally [33–35]. Another approach is
to add an additional ring [36–38] or an additional mode interaction in the same ring [39]. All
these approaches require significant additional hardware and seriously complicate the design of
the frequency comb generator. In all of these approaches, careful management of the thermal
instability is required.
Here, we describe a method for deterministic generation of a broadband frequency comb

that overcomes the disadvantages of the current approaches to single soliton generation without
requiring a significant increase in the hardware complexity. In general, our method creates a
broadband frequency comb by generating a periodic array of solitons or a perfect soliton crystal
rather than a single soliton. Soliton crystals have been the subject of increasing study in the past
three years [26,40–49] and have advantages over single solitons. First, soliton crystals use the
pump N times more efficiently than a single soliton, where N is the number of solitons in the
crystal, and the power in the frequency comb increases by a factor N. Second, the number of
frequency comb lines is reduced by a factor N, and the power in each comb line is multiplied by
a factor N2 [26]. By adiabatically following an appropriate path through the parameter space that
consists of (frequency detuning)×(pump amplitude), it is possible to first generate a narrowband
cnoidal wave that corresponds to periodically-spaced peaks on top of a high pedestal. As the
system parameters continue along the access path, the narrowband cnoidal wave continuously
transforms into a broadband cnoidal wave that is effectively a stable, periodic array of solitons,
i.e., a soliton crystal [26].
In this paper, we use “soliton crystal” to denote perfect soliton crystals. These are periodic

waveforms in the microresonator and hence cnoidal waves. Soliton crystals with defects [40] are
not periodic waveforms, and hence are not cnoidal waves.
We previously described a deterministic approach for generating broadband cnoidal waves

when thermal effects can be neglected. However, in practical systems, thermal effects are almost
never negligible, although there are exceptions [50]. We will show that this approach must be
modified when we take into account thermal effects, and the path through the parameter space
becomes slightly more complicated. However, the basic approach remains the same. This work
extends and describes in more detail previous work that appeared in [51].

Thismethod for generating broadband frequency combs is thermally stable. Since the generation
of the soliton crystal or single soliton is deterministic, we need merely move adiabatically along
the deterministic path in the parameter space, i.e., move at a speed that is sufficiently slow to
ensure that the system is in thermal equilibrium at each point in the parameter space.
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2. Basic equations and system parameters

The equation that describes the evolution of the light envelope in the microresonator is the
modified Lugiato-Lefever equation (LLE) that may be written [52]

TR
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∂τ
= −i

β2
2
∂2Ψ

∂θ2
+ iγ |Ψ|2Ψ +

{
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where Ψ (τ, θ) is the slowly varying envelope of the optical amplitude, TR is the round-trip time,
τ is time, θ = [−π, π] is the azimuthal coordinate, β2 is the group velocity dispersion (GVD)
coefficient in (radians)2/round-trip, γ is the nonlinear Kerr coefficient, l is the linear power
loss per round trip, ω0 is the angular frequency of pump, ωr (T) is the angular frequency of the
resonator mode at the cavity temperature T , Pin is the pump power that resides in the transverse
microresonator mode, ∆T = T − T0 is temperature difference between the cavity temperature
T and the ambient temperature T0, λ is the thermal absorption coefficient, and κ is the thermal
relaxation coefficient reported in the references given in Table 1. We note that Eq. (1) is valid for
microresonators that are made using silicon nitride or other ceramic materials. Microresonators
that are made using crystalline materials like CaF have a more complicated thermal behavior
[53]. Thermal effects are often neglected in theoretical studies of microresonators. While they
do not impact the existence of stable cnoidal waves solutions, they do significantly affect the
location of the stable regions in the (frequency detuning)×(pump amplitude) parameter space. In
particular, they cause the stable region for single solitons to become separate from the stable
regions for soliton crystals [51].

Table 1. Parameters for three experimentally demonstrated silicon-nitride microresonators or silica
microresonators with relatively small [50], intermediate [54], and large [13] mode circumferences

and hence three different values of the free spectral range (FSR).

Parameter [50] [54] [13]

Material Si3N4 Si3N4 SiO2

R [µm] 23 100 1500

FSR [GHz] 1004 240 22

TR [ps] 1.00 4.16 45.4

β2 −3.19 × 10−4 −8.74 × 10−5 −4.85 × 10−6

γ [W−1] 1.31 × 10−4 8.80 × 10−4 1.59 × 10−5

l 3.22 × 10−3 3.70 × 10−3 5.52 × 10−4

λ [K/J] 8.70 × 103 7.22 × 105 0.25

κ [MHz] 0.29 10 1 × 10−3

A −6.13 × 10−4 −0.12 −9.38 × 10−4

B 1.79 × 10−4 0.022 1.65 × 10−4

C 3.42 5.12 5.7

L 20.0 40.9 67.0

Pin/F2 [mW] 15.8 3.89 4.78

fdet/α [MHz] 257 70.8 0.97
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After normalization, Eq. (1) becomes

∂ψ

∂t
= i

∂2ψ

∂x2
+ i|ψ |2ψ − [1 + i (α + Φ)]ψ + F,

∂Φ

∂t
= AP − BΦ,

(2)

where ψ = (2γ/l)1/2 Ψ is the normalized slowly varying envelope of the optical amplitude,
t = [l/(2TR)] τ is the normalized time, x = (l/|β2 |)1/2 θ is the normalized azimuthal coordinate.
We have −L/2<x<L/2, where L = 2π (l/|β2 |)1/2 is the longitudinal mode circumference,
normalized to the dispersive scale length [26]. The quantity α = 2 [ωr (T0) − ω0]TR/l is the
normalized angular frequency detuning between the cavity resonance and the pump laser. The
physical frequency detuning fdet is given by fdet = [ωr (T0) − ω0] /(2π) = [l/(4πTR)]α. The
normalized thermal detuning is given by Φ = 2 [ωr (T) − ωr (T0)]TR/l = M∆T , where M =
2ωr (T0) TR (∂n/∂T) /(nl) and n (T) is the refractive index. We are assuming that the temperature
change is small so that a Taylor expansion of n (T) is valid. The normalized pump amplitude is
given by F = i

(
8γPin/l3

)1/2, and P = (1/L)
∫ L/2
−L/2 |ψ (x) |

2dx is the normalized average intracavity
power in the frequency comb. The normalized thermal coefficients A = λTRM/γ and B = 2TRκ/l
give the shift of the detuning in response to the intracavity power and the thermal relaxation rate,
respectively. It is useful to define the ratio C = −A/B. For the stationary solutions of Eq. (2), we
have Φ = −CP. Hence, the stationary solution with a fixed value of α − CP and a fixed value of
F is the same for any value of the thermal ratio C. The parameter B governs the rate at which a
thermal perturbation relaxes and hence it is necessary to move through the parameter space at a
rate that is small compared to B in order for the evolution to be adiabatic. In physical units for
the parameters of [54], we find that the relaxation rate is [0.1 µs]−1 as shown in Table 1. So, the
evolution through the parameter space must be slow compared to 0.1 µs. For the other example
systems in Table 1, we find for the parameters in [50] that the evolution should be slow compared
to 3.4 µs, while for the parameters in [13] the evolution should be slow compared to 1 ms.

In [26], we describe in detail the computational methods that we used to solve Eq. (2). We use
boundary-tracking algorithms based on dynamical methods to find the stable regions. We use
efficient split-step methods, combined with quantum noise, to find the time evolution.

In Table 1, we show parameters for three experimentally demonstrated silicon-nitride microres-
onators or silica microresonators with relatively small [50], medium [54], and large [13] mode
circumferences and hence three different values of the free spectral range (FSR). We assume that
all devices are operating at room temperature and are pumped at 1.5 µm.

3. Results

In Fig. 1, we show the stable regions when L = 50 for different cnoidal wave periodicities N, both
with and without thermal effects. We recall that a cnoidal wave is a periodic waveform whose
azimuthal period equals 2π/N, where the periodicity N can be any positive integer [26]. When
N = 1, the cnoidal wave corresponds to a single soliton. For N . L/(2π), we found that cnoidal
waves correspond approximately to a periodic string of solitons, while when N & L/(2π), the
cnoidal waves correspond to Turing rolls in which the periodically varying amplitude sits atop a
pedestal of comparable magnitude. The choice L = 50 in Fig. 1 corresponds approximately to the
experiments of Wang et al. [14]. The periodicities of the stable regions scale linearly with L [26]
so that the regions in (α, F) that are stable for periodicity N1 with L = L1 are approximately the
same as the regions that are stable for periodicity N2 = cN1 when L = L2 = cL1. The observed
scaling with L is physically reasonable since an increase in L corresponds to an increase in the
mode circumference, so that the physical length of the cnoidal wave period remains approximately
constant as both L and periodicity N increase. Figure 1(a) shows the stable regions with no
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thermal effect (C = 0), while Fig. 1(b) shows the stable regions with C = 5, which corresponds to
the coefficient for silicon nitride at room temperature [54]. Comparing Figs. 1(a) and 1(b), we see
that thermal effects shift all the stable regions to larger detuning frequencies (larger α and lower
pump frequencies). The regions are also stretched and skewed. When thermal effects are not
included, the stable regions for low periodicities (N ≤ 5 with L = 50) almost completely overlap.
That is no longer true when thermal effects are included. Cnoidal waves with a low periodicity
correspond to a periodic stream of solitons, i.e., a soliton crystal [26,40–49], so that the stable
regions are expected to overlap when thermal effects are not included. However, the intracavity
power is approximately proportional to the periodicity, so that when thermal effects are included
the detuning of the stable regions decreases as the periodicity decreases. We observe that there is
a parameter regime in which stable single solitons exist, but stable soliton crystals do not. This
result explains in part the usefulness of backward detuning to obtain single solitons [52] and
underlines the crucial role that thermal effects play.
When thermal effects can be neglected, as in the experiments of Moille et al. [50], we

previously showed that a broad bandwidth frequency comb can be obtained deterministically by
appropriately moving through the α × F [(frequency detuning)×(pump amplitude)] parameter
space. First, one raises the pump power. Below the red-dashed curve, a continuous wave is
generated that increases in amplitude as the pump amplitude increases. When the red-dashed
curve is crossed, the continuous wave becomes unstable, and a cnoidal wave is generated. When
L = 50, this cnoidal wave has periodicity 8, corresponding to the solid black curve labeled 8
in Fig. 1(a). When it appears, this cnoidal wave corresponds to a narrowband frequency comb
so that in the azimuthal domain there is a periodic array of eight peaks that sits atop a pedestal,
as shown in Fig. 2(c). Next, one increases the detuning while simultaneously raising the pump
power so that the system remains within the stable region for the cnoidal wave that was created.
As the detuning and pump power are increased, the pedestal decreases and the peaks sharpen, so
that the cnoidal wave transforms into a periodic train of solitons that is a soliton crystal, as shown
in Fig. 2(e) [26,40–49].

Fig. 1. Stable regions of cnoidal waves (a) without (C = 0) and (b) with thermal effects
(C = 5) at L = 50. For clarity, only a selection of the stable regions is plotted. Numbers
label the periodicity N of the cnoidal waves. The dashed red curves show a limit below
which continuous waves are stable. The scale for α is both shifted to larger values and scaled
by a factor 1.5 in (b) relative to (a).

When thermal effects are taken into account, this deterministic path must be somewhat modified.
In Fig. 2(a), there is a triangular-shaped region surrounded by blue dashes on two sides and the
red-dashed curve on the right. Inside this region, two stable continuous wave solutions exist
with different amplitudes. If this region is reached by passing through the lower blue-dashed
curve, only the lower amplitude solution is observed. In that case, if one enters the region
where the cnoidal waves are stable, which is surrounded by the solid black curve in Fig. 2(a),
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Fig. 2. (a) Stable region of periodicity-8 cnoidal waves including thermal effects with
L = 50 and C = 5 (black curve). The red-dashed curve shows a limit below which continuous
waves are stable. The blue-dashed curves show the limits inside of which three continuous
wave solutions exist that can be stable or unstable. Inside the triangular-shaped region
surrounded by the blue dashes on two sides and the red-dashed curve on the right is a region
where two stable continuous wave solutions exist with different amplitudes. (b) Evolution of
the waveform when deterministically accessing the periodicity-8 cnoidal wave along the
solid blue path, shown in (a). (c) Waveform of the periodicity-8 cnoidal wave and (d) its
corresponding spectrum at α = 6 and F = 1.01. (e) Waveform of the periodicity-8 cnoidal
wave and (f) its corresponding spectrum at α = 12 and F = 2.4 [red dot in (a)].

the continuous wave remains stable, and a cnoidal wave is not observed [55]. Instead, one must
enter the triangular region through the upper blue-dashed curve. In that case, a higher-amplitude
continuous wave is observed, which goes unstable when the region where cnoidal waves exist
is entered, so that the periodicity-8 cnoidal wave is obtained, corresponding to a narrowband
frequency comb [55]. Continuing to increase α and F along the solid blue path shown in
Fig. 2(a), the peaks become more narrow and the pedestal between the peaks decreases, so that
the waveform gradually transforms into a soliton crystal, corresponding to a broadband frequency
comb. The solid blue path shown in Fig. 2(a) has a bend. The purpose of this bend is for the path
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to remain within the stable region for the periodicity-8 cnoidal wave. It is possible to reach this
point without a bend by moving along the solid blue curve in Fig. 3(a). In this case, a cnoidal
wave with periodicity 10 first appears. As the system evolves along the solid blue curve, the
periodicity-10 cnoidal wave first goes unstable, yielding a periodicity-9 cnoidal wave, which goes
unstable in turn, yielding a periodicity-8 cnoidal wave. We show the evolution of the waveform
in Fig. 3(b). At the time indicated by the white dashed line, we no longer change α and F, but
continue the evolution to ensure that we have reached a stable solution. Other paths through the
parameter space that end at the same (α, F) also yield the same broadband cnoidal wave. The key
requirements are to enter the triangular region in Figs. 2(a) and 3(a) through the upper dashed
curve and to move adiabatically through the parameter space so that the microresonator is always
close to thermal equilibrium.

Fig. 3. (a) Stable regions of periodicity-8 (black), -9 (red) and -10 (cyan) cnoidal waves
including thermal effects with L = 50 and C = 5. (b) The evolution to access periodicity-8
cnoidal waves along the solid blue path in (a). Once the path reaches α = 12, we continue
the evolution without changing α.

The simulations that we carried out to access the broadband cnoidal wave that we show in
Figs. 2(b) and 3(b) were carried out adiabatically. To verify that the rate at which we changed the
system parameters is slow enough to be adiabatic, we carried out simulations in which we move
through the parameter space at half the rate in physical time that we used in Figs. 2(b) and 3(b).
Hence, the simulation was twice as long in physical time. We show the results in Fig. 4. While
details of the transient evolution change, particularly along the path that we show in Fig. 3(a), the
end result does not change except for an azimuthal shift.

Fig. 4. Simulations at half the rate and twice the duration as in (a) Fig. 2(b) and (b) Fig. 3(b).
As was the case in Fig. 3(b), we continue the evolution in Fig. 4(b) without changing α
beyond the time indicated by the white-dashed line.
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We also compare the stability maps for different values of the thermal parameter C and
longitudinal mode circumference L. Figure 5 shows the stable regions for cnoidal waves for (a)
C = 3.42 and L = 20, (b) C = 5 and L = 40, and (c) C = 5 and L = 70, which correspond to
the experimental parameters in [50], [54], and [13], respectively. Comparing Figs. 5(b) and
5(c), the expected linear scaling of the periodicity of the stable regions is clearly visible. This
approximate scaling is somewhat less visible when comparing Fig. 5(a) with the others, both
because the scaling becomes less exact when L decreases and because we used a different value
of C in Fig. 5(a) in order to better match the experiments in [50].

Fig. 5. Stable regions for cnoidal waves with different values of the thermal parameter C
and longitudinal mode circumference L: (a) C = 3.42 and L = 20, (b) C = 5 and L = 40, (c)
C = 5 and L = 70. In (b) and (c), we only show a selection of the stable regions for clarity.
Numbers label the periodicity N.

Figure 6 shows the stable regions for three different values of C for periodicity-8 cnoidal waves
when L = 50. As C increases, stable regions move to larger α. They are also skewed to larger α
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as F becomes larger, which is expected since a larger F corresponds to a larger intracavity power
P and hence a larger change in α.

Fig. 6. Stable regions for periodicity-8 cnoidal waves with different values of the thermal
parameter C and with L = 50. The numbers label the thermal parameter C.

4. Conclusion

We have described a method to deterministically access broad bandwidth frequency combs
in microresonators by moving adiabatically through the α × F [(frequency detuning)×(pump
amplitude)] parameter space. This method produces frequency combs that consist of cnoidal
waves with periodicity greater than 1. In the broad bandwidth limit, the frequency comb
corresponds to a periodic train of solitons that is a soliton crystal.

Thermal effects play a critical role in microresonators and must be taken into account. When
thermal effects can be ignored, it is possible to deterministically access broadband combs by
first raising the pump power to enter the stable region for cnoidal waves and then simultaneously
increasing the detuning and pump power in an appropriate ratio. When thermal effects are taken
into account, it is necessary to raise the pump power and then increase the detuning along a path
in the parameter space that produces a high-amplitude continuous wave. From that point in the
parameter space, it is possible to access broad bandwidth cnoidal waves that are soliton crystals
by simultaneously increasing the detuning and pump power along an appropriate path in the
parameter space.
While our examples have mostly focused on L = 50, there is a scaling relation that makes

it possible to extend our results to a large range of L values, and our results indicate that it is
possible to deterministically obtain broad bandwidth frequency combs in any microresonator by
moving adiabatically through an appropriate path in the α × F parameter space.
When thermal effects can be neglected, it was previously shown that the stable regions for

cnoidal waves in the α × F parameter space almost completely overlap for small periodicities.
In this limit, which corresponds to broadband frequency combs, the cnoidal waves are single
solitons or soliton crystals. When thermal effects are important, the stable regions for soliton
crystals with different periodicities separate. This result suggests that it may be possible to
deterministically obtain single solitons by backwards-detuning from a soliton crystal. This
suggestion is compatible with the experimental results of Guo et al. [52] that show that single
solitons can be obtained by backwards-detuning from a random array of solitons and by Karpov
et al. [46] that show that it is possible to deterministically move in the α × F parameter space
from one soliton crystal to another. We have found that it is indeed possible to deterministically
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obtain single solitons in some cases, but we reserve a detailed discussion of this issue for the
future.

The work in this paper extends prior work [26] to include thermal effects in a map of the stable
regions for cnoidal waves in microresonators. However there are important effects that remain to
be included. Chief among them are avoided crossings and higher-order chromatic dispersion,
particularly in the broadband limit. Frequency dependence of the coupling, nonlinear, and
thermal coefficients in the broadband limit are also likely to be important. These are important
topics for future work.
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