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Thermal instabilities, frequency-comb formation, and temporal oscillations in Kerr microresonators
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We analyze the consequences of dissipative heating in driven Kerr microresonators theoretically and numer-
ically, using a thermal Lugiato-Lefever model. We show that thermal sensitivity modifies the stability range of
continuous waves in a way that blocks direct access to broadband frequency-comb-forming waveforms, and we
propose a deterministic access path that bypasses the thermal instability barrier. We describe a thermal instability
that leads to thermo-optical oscillations via a Hopf bifurcation.
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I. INTRODUCTION

The great progress in the generation of frequency combs
in driven Kerr microresonators [1–6] has motivated a flurry
of theoretical effort to identify and calculate waveforms in
microresonator models [7–21]. A thorough mapping of the
steady states of microresonator models and their stability
plays an important role in the experimental search for deter-
ministically accessible waveforms with good comb properties.

The steady state and stability properties of continuous
waves, cnoidal waves (also known as perfect soliton crystals,
Turing rolls, and periodic patterns [18]), and solitons in the ba-
sic Lugiato-Lefever model of microresonators are quite well
understood [8,17–19,22], and significant progress has been
made in the study of multisoliton waveforms [15,23], and
of solitons with high-order dispersion and Raman scattering
[12,20].

However, this theoretical progress has for the most part
neglected the role of dissipative heating in the resonator wave-
forms and their stability, although the thermal response plays
a crucial part in the experimental generation of cavity solitons.
The cooling of the resonator when the power circulating in the
cavity drops abruptly after a chaotic waveform evolves into a
bunch of solitons creates a pump-cavity detuning drift, poten-
tially destabilizing the solitons. The cooling instability is an
obstacle to soliton formation that can be mitigated with ther-
mal control [24], or by operating at cryogenic temperatures
[25]. On the other hand, the temperature dependence of the
cavity resonance separates the overlapping stability regions
of soliton and multisoliton waveforms [26], facilitating the
synthesis of a single-soliton waveforms by backward detuning
[27], and can serve as a means to control the dynamics of
cavity solitons [28].

Dissipative heating plays an important role in applica-
tions of Kerr microresonators other than frequency-comb
formation, and this effect was studied in numerous exper-
iments, where it often leads to temporal oscillations of a
spatially uniform field (see Ref. [29] for a review of exper-
iments and potential applications). While this phenomenon

has been studied extensively in experiments and simula-
tions, a basic theoretical understanding of the onset of
oscillations and its dependence on parameters is presently
lacking.

In this paper we apply the dynamical computation ap-
proach [30] to the problem of thermo-optical dynamics of
Kerr resonators. This method, which combines efficient com-
putational tools with ideas from dynamical systems theory,
allows for a comprehensive mapping of stable solutions of
nonlinear evolution equations for large sets of parameter val-
ues. In previous works we applied this method to models of
mode-locked lasers [17,30–33] and pumped Kerr resonators
[18,19], where we studied the existence and stability of dis-
sipative cnoidal waves. Cnoidal waves are spatially periodic
waveforms that can arise as Turing patterns by modulational
instability of continuous-wave light for blue- and moder-
ately red-detuned pumping, but become a periodic train of
well-separated pulses in the highly red-detuned pump regime,
where stable cnoidal waves coexist with stable single cavity
solitons. This regime also supports stationary nonperiodic ar-
rays of solitons, such as soliton crystals with defects [34], and
accordingly highly red-detuned cnoidal waves are also known
as perfect soliton crystals [6,35]. Here the term cnoidal waves
will refer to any periodic waveform, of which perfect soliton
crystals are the highly red-detuned subset.

In applications of Kerr microresonators to frequency-comb
formation the goal is to generate strong coherent wideband
combs [1–6]. The current standard practice for this purpose
is to use single soliton waveforms as a source. However, sin-
gle solitons are not directly accessible from continuous-wave
light, and are instead generated by sweeping the pump fre-
quency through chaotic regions, a process which yields cavity
solitons only with some probability. Single soliton waveforms
can only be generated deterministically by injecting an ex-
ternal signal or modifying the pump. Another limitation of
single solitons as comb sources is that they use the pump
inefficiently and yield weak combs, especially for relatively
large resonators that have radio-frequency soliton repetition
rates [36].
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FIG. 1. Stability of continuous-wave solutions of the Lugiato-Lefever equation including thermal effects, Eqs. (5) and (6), as a function
of pump detuning α and amplitude F for four sets of thermal parameters. Each point in the α-F plane corresponds to three continuous-wave
solutions, of which at most two are stable, inside the blue wedge, and to a unique solution (stable or unstable) outside the wedge. The
yellow curve marks the lower boundary of the region of the finite-wavelength modulational instability, which affects only the upper branch of
continuous waves for parameter values in the coexistence wedge in the three panels with C > 0. The green curve, where present, marks the
instability threshold of the uniform mode with complex growth eigenvalues, which affects only the upper branch where it overlaps with the
coexistence wedge. The dark circles mark the points on the modulational instability boundaries where the fastest growing mode has the largest
wavelength. The red dashed line in the upper right panel shows a deterministic path to access perfect soliton crystals.

Cnoidal waves, on the other hand, are deterministically
accessible and can have bandwidths comparable with solitons.
Of these, the red-detuned perfect soliton crystals exhibit the
best comb shape and utilize the pump power most efficiently.
Compared to single solitons in the same resonator, n-period
perfect soliton crystals have n times larger comb spacing, but
each comb line is n2 times stronger. These waveforms can
be accessed by paths in parameter space that were identi-
fied using dynamical computational methods in Refs. [18,19].
It should be emphasized that the waveform evolution along
paths of this type, which moves through stable steady states,
is completely deterministic in nature, depending neither on
the rate of path traversal, as long as it is slow enough that
the evolution is adiabatic, nor on initial conditions, in contrast
with stochastic control paths that reach soliton crystals with
some probability from chaotic waveforms [6].

Here we compute the existence and stability properties of
continuous waves including thermal effects, and we explain
the similarities and differences from the well-studied case in
which thermal effects are ignored [10,11]. We identify three
basic consequences of dissipative heating. First, as the ther-
mal sensitivity increases, the coexistence wedge in parameter
space, where there are three continuous-wave solutions for
each set of pump parameters, moves down in pump power;

as a result, thermal instabilities block access paths which start
with a moderately or highly red-detuned pump frequency. We
show in Fig. 1 examples of the coexistence wedge and an
access path; the significance of the parameters is explained
below. The thermal shift of the nonlinear fold of the resonance
curve and of the bistability region was identified and studied
in detail in Ref. [37].

Second, the threshold curve of modulational instability,
where cnoidal waves bifurcate from continuous waves, moves
to larger detuning. Therefore, a deterministic path to wide-
band perfect soliton crystals must bypass the tip of the
coexistence wedge before crossing the lower end of the mod-
ulational instability curve.

The two thermal effects described so far depend only on
the strength of the thermal response and are insensitive to the
thermal time scale. For this reason they have close analogs
in Fabry-Pérot Kerr resonators, where interactions between
counterpropagating pulses give rise to a detuning proportional
to the total power like the one caused by changing tempera-
ture, albeit on a completely different time scale [38,39].

The third consequence of dissipative heating is that contin-
uous waves become susceptible to instabilities that lead to the
aforementioned oscillations of spatially uniform waveforms.
We show that oscillatory instabilities arise only when the
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heating rate is larger than a minimal threshold value. Then
continuous waves become unstable either for sufficiently large
pump powers for any detuning, or only for a range of pump
powers above a minimal detuning, depending on the thermal
response parameters in a way which is explicitly derived.

It has been argued that the competition between processes,
such as temperature dependence of the index of refraction
versus thermal expansion, is the common mechanism in the
several physical underpinnings of thermal oscillations [29].
An interesting example is the thermal relaxation oscillations
that occur because of competition of thermal detuning and
thermal expansion [40,41], where theoretical modeling has
to track the temperatures of the mode volume and the bulk
of the microresonator separately. In other cases [42,43] the
thermal oscillations arise through thermal detuning alone,
which depends only on the mode volume temperature that
is included in standard models of thermal response of comb-
forming microresonators (e.g., Ref. [27]), and this approach
will be adopted here.

After presenting the equations of motion governing the
cavity waveform and thermal detuning in Sec. II, we derive
the basic properties and stability equations of stationary solu-
tions in Sec. III. In Sec. IV we calculate the continuous-wave
solutions and present their three modes of instability. Modula-
tional instabilities can lead to the formation of steady cnoidal
waves that are studied in Sec. V, and the thermal oscillations
that can arise from uniform instabilities are investigated in
Sec. VI. Section VII presents our conclusions.

II. THERMO-OPTICAL EQUATIONS OF MOTION

We model the evolution of the slowly varying envelope
ψ (x, t ) of the optical waveform in a pumped resonator with
second-order dispersion coefficient β and Kerr coefficient γ

by the Lugiato-Lefever equation with periodic boundary con-
ditions,

∂ψ

∂t
= {−l + i[ω − ωc(T )]}ψ − iβ

2

∂2ψ

∂x2

+ iγ |ψ |2ψ + F̃ , ψ (x = 0, t ) = ψ (x = L̃, t ), (1)

where 0 � x � L̃ is the position along the propagation di-
rection in the resonator, L̃ is the resonant mode diameter, l
is the loss coefficient, ω and F̃ are the pump frequency and
amplitude (respectively), and ωc is the temperature-dependent
cavity resonance frequency [44].

The dynamics of the temperature T of the resonator is gov-
erned by absorptive heating proportional to the light intensity,
and diffusive cooling. The cooling rate is such that the typical
time scale of temperature dynamics is always much longer
than the cavity round-trip time; therefore, T is independent of
x, and dissipative heating is proportional to the mean power:

P =
∫ L̃

0
|ψ |2 dx

L̃
. (2)

The heat balance equation therefore becomes

dT

dt
= λP − κ (T − T0), (3)

where the energy conversion factor λ and the cooling rate κ

are constant parameters that depend on material properties
and the geometry of the resonator, and T0 is the temperature
of the environment. The dependence of the refractive index
on temperature is weak so that we can express the thermal
detuning as


 ≡ ωc(T ) − ωc(T0) = ω′
c(T0)(T − T0). (4)

Assuming anomalous dispersion β < 0, and choosing units
of time, space, and power such that l = |β| = γ = 1 brings
the equations of motion to dimensionless form:

∂ψ

∂t
= − (1 + i(α + 
))ψ + i

2

∂2ψ

∂x2
+ i|ψ |2ψ + F, (5)

ψ (x = 0, t ) = ψ (x = L, t ),

d


dt
= −AP − B
, (6)

where

P =
∫ L

0
|ψ |2 dx

L
, (7)

and the dimensionless parameters are

α = ω − ωc(T0)

l
, F =

√
γ F̃

l3/2
, L =

√
l

β
L̃, (8)

A = − λl3

γω′
c

, B = κl. (9)

α and F have the usual significance of pump detuning and
amplitude, L is the resonant mode length measured in units
determined by the dispersion and loss, while A is the heat-
detuning conversion coefficient and B is the thermal relaxation
coefficient of the resonator. In microcomb experiments A is
positive because ωc is a decreasing function of temperature,
and B is positive by fundamental principles. As a consequence
the thermal detuning 
 is always negative in the steady state
and for resonators initially at ambient temperature. The pa-
rameters A and B are typically small, of O(10−1) or less
[26], but the thermal sensitivity ratio C = A/B is of order 1
or larger, which means that thermal effects are moderate or
strong, as we show below.

III. STATIONARY SOLUTIONS AND THEIR STABILITY

If the cavity waveform ψs(x) with mean power Ps is inde-
pendent of time, then the thermal detuning is


s = −CPs, (10)

where the thermal sensitivity parameter C = A/B as defined
above. It follows that ψs(x) obeys the integrodifferential
equation

−[1 + i(α − CPs)]ψs + i

2

∂2ψs

∂x2
+ i|ψs|2ψs + F = 0. (11)

A simple but important conclusion is that the entire set of
stationary waveforms for all detunings is independent of C.
That is, if ψs(α, F,C; x) is a solution of Eq. (11) with pump
parameters α, F , and thermal sensitivity ratio C, then the
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same waveform is a solution of this equation without thermal
response, lower detuning α0 = α − CPs, and the same F :

ψs(α, F,C; x) = ψs(α0, F, 0; x), α = α0 + CPs. (12)

Regions of existence of stationary waves are accordingly
shifted to larger detunings in the α-F plane as C in-
creases. Note, however, that although the correspondence (12)
between stationary waveforms with different thermal coef-
ficients is one to one, there are usually several solutions of
Eq. (11) for each choice of the parameters α, F , and C, with
different mean powers, and these correspond via Eq. (12) to
C = 0 solutions with different values of α0, and vice versa.
For example, the mean power of red-detuned cnoidal waves is
much larger than that of single solitons with the same pump
parameters, so that their thermal detuning is correspondingly
larger. As shown in Refs. [38,39], Eq. (11) with an appro-
priate choice of C serves as an effective model for stationary
waveforms in a Fabry-Pérot Kerr resonator and therefore the
mapping (12) also relates stationary waveforms in ring and
Fabry-Pérot resonators.

Note also that Eq. (12) does not imply that the waveform
has the same stability properties for different thermal parame-
ters. The stability of ψs is determined in the standard manner
by setting ψ = ψs + ψ1 and 
 = −CPs + 
1, with ψ1, 
1

small, in Eqs. (5) and (6), giving

∂ψ1

∂t
= − [1 + i(α − CPs)]ψ1 − i
1ψs + i

2

∂2ψ1

∂x2

+ 2i|ψs|2ψ1 + iψ2
s ψ∗

1 , (13)

d
1

dt
= −AP1 − B
1, (14)

where

P1 = 2Re
∫

dx

L
ψs(x)∗ψ1(x). (15)

In particular, the stability properties depend on the individual
values of A and B, and not only on their ratio C.

IV. CONTINUOUS WAVES

Stationary continuous waves are uniform solutions
ψs(x) ≡ ψc of Eq. (11); the mean power in this case is simply
|ψc|2, so that the thermal nonlinearity can be combined with
the Kerr nonlinearity, giving

−(1 + iα)ψc + i(1 + C)|ψc|2ψc + F = 0. (16)

The thermal nonlinearity combines with the Kerr nonlinear-
ity in Eq. (16) because for continuous waves, in contrast
with other waveforms, the disparity of the time scales of the
two nonlinearities does not matter. It follows that for con-
tinuous waves there is a second mapping between thermal
and nonthermal waveforms: If ψc(α, F,C) is a solution of
Eq. (16) with pump parameters α, F , and thermal sensitivity

C, then
√

1 + Cψc(α, F,C) is a solution for the same α,
F0 = √

1 + CF , and C = 0:

ψc(α, F,C) = √
1 + Cψc(α, F0, 0), F0 = √

1 + CF.

(17)
The mapping (17) relates different waveforms at the same
pump frequency and different pump powers, whereas the map-
ping (12) relates the same waveform at the same pump power
but at a different frequency.

It can be shown (see, e.g., Ref. [11]) that Eq. (16) implies
that the continuous-wave power |ψc|2 obeys a cubic equa-
tion. The real roots of the equation are always positive, and
each such root corresponds to a unique complex solution of
Eq. (16). It follows that for a fixed choice of parameters, there
are either one or three continuous-wave solutions. When C =
0 the region of coexistence of three continuous-wave solutions
is a wedge in parameter space, whose small-detuning tip is at
α = √

3 (see Fig. 1). The mapping (17) implies that as C is
increased, the coexistence region in the α-F plane,

Fce−(α) < F < Fce+(α), α >
√

3, (18)

scales down in F as 1/
√

1 + C. Thus, the coexistence regions
are wedge-shaped domains for any C, that are shown in Fig. 1
with blue boundaries. The expressions for Fce± are collected,
along with definitions for additional quantities defined below,
in Table I.

It is useful to study the behavior of continuous waves as a
function of α and P, because unlike the α-F parametrization,
each choice of α and P corresponds to a unique solution. The
coexistence wedge in the α-F plane unfolds onto a smooth
lobe Pce− < P < Pce+ in the α-P plane (see Table I) bounded
by the solid blue curve in Fig. 2. Since each point in the
α-P plane corresponds to a single continuous wave, the three
continuous-wave branches appear as separate regions in the
lobe bounded by Pce±; the boundaries between these regions
are the curves Pbr±(α) (see Table I) that are marked by the
blue dashed curves in Fig. 2, so that the continuous-wave
solutions in the regions below, between, and above the blue
dashed lines belong to the lower, middle, and upper branches
(respectively). The mapping (17) implies that the lobe of co-
existence scales down in P as 1/(1 + C) when C is increased.

A. Modulational instability

We next study the instability modes of continuous waves
in microresonators, taking into account thermal effects. Due
to translational invariance, Eq. (13) has solutions of the form
ψ1(x, t ) = ψk+(t )eikx + ψk−(t )e−ikx, k real, for uniform ψs ≡
ψc. The thermal effects are nonlocal, so that it is necessary
to consider the cases of zero and nonzero k separately. In this
section we focus on the k �= 0 case.

In the case k �= 0 we find that P1 = 0, and Eq. (14) then
implies that 
1 = 0. Equation (13) becomes a two-variable
linear system in the variables ψk+, ψk−,

d

dt

(
ψk+
ψk−

)
= (−1 + iM2)

(
ψk+
ψk−

)
, (19)

M2 =
[−(

α + 1
2 k2 − (2 + C)|ψc|2

)
ψ2

c
−(ψ∗

c )2 α + 1
2 k2 − (2 + C)|ψc|2

]
. (20)
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TABLE I. Analytical expressions and physical significance of the boundaries of the regions of existence and stability for continuous waves
in Kerr resonators taking into account thermal effects (see main text for detailed description.) The boundaries and thresholds are shown in
Figs. 1 and 2.

Value Expression Significance Graphical presentation

Fce±

√
2

27

α(α2 + 9) ± (α2 − 3)3/2

1 + C
Boundaries of the coexistence region Continuous blue line

Pce±
2α ± 2

√
α2 − 3

3(1 + C)

Pbr±
2α ± √

α2 − 3

3(1 + C)
Boundaries between continuous-wave branches Dashed blue line

Fmi

√
1 + (α − 1 − C)2 Modulational instability threshold Yellow line

αt 2(1 + C) − √
C(2 + C) End of modulational instability curve Small black circle

Plw±
(2 + C)α ±

√
α2 − (C + 1)(C + 3)

(C + 1)(C + 3)
Boundaries of long-wave instability region Red line

αh
2(B + 1)

√
(C + 1)(3 + C − A)

A − 2
Minimal α for finite-frequency instability Tip of green line

Ph±
α(2(2 + C) − A) ± √

�

2(1 + C)(3 + C − A)
Boundaries of finite-frequency instability Green line

region

�
α2(A − 2)2 − 4(B + 1)2

×(3 + C − A)(1 + C)

The eigenvalues of iM2 are

±
√

det M2, det M2 = P2 − [k2 + α − (2 + C)P]2,

(21)

so that the solution is modulationally unstable if
maxk det M2 > 1.

We now distinguish between two cases. When α < (2 +
C)P, we find that det M2 attains its maximum, P2, at a finite
wave number km; therefore, finite-wavelength instability oc-
curs in the wedge P > max(α/(2 + C), 1) of the α-P plane
(shown in yellow in Fig. 2). The image Fmi(α) of the line
P = 1 in the α-F plane (see Table I) is the square root of a
parabola with a minimum of F = 1 at α = 1 + C (shown in
yellow in Fig. 1). However, when the modulational instability
boundary lies inside the coexistence wedge, it is necessary to
check the stability properties in the α-P plane to determine
which of the continuous-wave branches it affects. One can
verify using the expressions in Table I that for any C > 0 and
for all α > 2 + C, Pbr−(α) < α/(2 + C) < Pbr+(α), so that
the sloping part of the finite-wavelength instability boundary
consists of middle-branch points. It follows that for α � 2 +
C the modulational instability affects only the upper branch

in the coexistence region, considering that the middle branch
is inaccessible because it is unstable with respect to uniform
perturbations (as discussed in Sec. IV B).

For α < 2 + C, the modulational instability can affect both
the lower and upper branches. Nevertheless, the lower branch
can become modulationally unstable only if the modula-
tional instability boundary curve intersects the coexistence
region below its tip. This is the behavior for C = 0 (see
Fig. 2, top left), but as previously explained, the coexistence
region shifts to lower powers as C increases, and in this
way the tip of the coexistence region, where the continuous-
wave branches meet, crosses the modulation instability
boundary when C = Cu = 2/

√
3 − 1 ≈ 0.15. For C > Cu,

therefore, the modulational instability affects only the upper
branch.

This observation, combined with the small magnitude of
Cu, has an important implication for the deterministic genera-
tion of perfect soliton crystals, which utilizes the modulational
instability at relatively large red detunings [18,19]. Namely,
since red-detuned pumps allow for multiple continuous-wave
branches, and having observed that for typical thermal condi-
tions the lower branch is not susceptible to the modulational
instability, the deterministic access path must begin at a
relatively small detuning in order to bypass the tip of the
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FIG. 2. Stability of continuous-wave solutions of the Lugiato-Lefever equation including thermal effects, Eqs. (5) and (6), as a function of
pump detuning α and mean cavity power P for the four sets of thermal parameters of Fig. 1. Each point in the α-P plane corresponds to a unique
continuous-wave solution. The solid blue curve is the boundary of the region where three branches exist for the same pump power, and the
dashed blue curve marks the boundary between the branches. The solutions in the shaded regions of the graphs are unstable, with shading color
indicating the instability modes as follows: Blue, uniform instability with a real growth eigenvalue; red, long-wave modulational instability;
yellow, finite-wavelength modulational instability; and green, uniform instability with complex growth eigenvalues. The significance of the
dark circle is the same as in Fig. 1.

coexistence region, before the pump detuning is increased
toward the modulational instability boundary. The maximal
detuning that can be achieved in this way, αt (expression
given in Table I), is where the modulational stability threshold
curve crosses the boundary between the upper and middle
branches in the α-P plane; this point, which corresponds to
the tangency between the modulational instability curve and
the lower boundary of the coexistence wedge in the α-F
plane, is circled in both Figs. 2 and 1. The deterministic
path to access perfect soliton crystals is discussed further in
Sec. V.

The second case of the modulational instability occurs
when α � (2 + c)P. The maximum of det M2 is then at
k = 0, so that the fastest growing mode of this insta-
bility has the smallest admissible positive wave number,
kmin = 2π/L. In applications, the resonant mode length L
is typically larger than 10 in system units [18], so that
max det M2 ≈ det M2(k = 0). It follows that the long-wave
instability affects continuous waves with det M2(k = 0) > 1
and α � (2 + C)P. The solution of the quadratic inequal-
ity det M2(k = 0) > 1 is Plw− < P < Plw+ (see Table I for
definitions).

It follows from Eq. (21) that P > 1 is a necessary condi-
tion for instability, and therefore α > 2 + C is a necessary
condition for the long-wave instability. On the other hand, it
can be checked using the expressions in Table I that Plw− <

α/(2 + C) < Plw+ for α > 2 + C, so that the region in α, P
parameter space for long-wave instability is bounded from
above by α/(2 + C) and from below by Plw− (defined in
Table I); the lower boundary curve is marked in red in Fig. 2.
It also follows from the expressions in Table I that Pbr− <

Plw− and Plw+ < Pbr+ for any C > 0, so that the long-wave
instability only affects the physically inaccessible middle
branch.

B. Uniform instabilities

We now consider the case where ψ1(t ) is spatially uni-
form. In this case 
1 is nonzero, while the dispersion term
in Eq. (13) drops, and we obtain the three-variable system

d

dt

⎛
⎜⎝

ψ1

ψ∗
1


1

⎞
⎟⎠ = M3

⎛
⎜⎝

ψ1

ψ∗
1


1

⎞
⎟⎠, (22)
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M3 =

⎛
⎜⎝

−1 + i(−α + (2 + C)|ψc|2) iψ2
c −iψc

−i(ψ∗
c )2 −1 − i(−α + (2 + C)|ψc|2) iψ∗

c

−Aψ∗
c −Aψc −B

⎞
⎟⎠. (23)

The eigenvalues of M3 are the roots of a cubic polynomial,
so that there are two cases: M3 has either three real eigen-
values, or one real eigenvalue and a complex-conjugate pair.
In the former case stable solutions are characterized by three
negative eigenvalues, and in the latter case by one negative
eigenvalue, and a pair of complex-conjugate eigenvalues with
negative real parts, so that det M3 < 0 for all stable solutions.

A real-eigenvalue instability occurs when the largest of the
real eigenvalues, and therefore det M3, changes sign. A direct
calculation starting from Eqs. (23) shows that det M3 > 0
whenever Pbr− < P < Pbr−, that is, precisely for the middle
branch, which corresponds to the interior of the dashed blue
lobe in Fig. 2. The entire middle branch is therefore unstable;
this instability, which generalizes an analogous instability in
nonthermal resonators [11], is typical for the middle branch
in bistable systems [45]. The middle-branch solutions are not
close to any stable solutions except where the branch connects
to the lower and upper branches in a standard saddle-node
bifurcation [45].

A complex-eigenvalue instability occurs when the real part
of the complex-conjugate pair of eigenvalues changes sign.
It is a finite-frequency instability with an oscillatory growth
mode that is created in a Hopf bifurcation. We show below in
Sec. VI that the finite-frequency instability growth saturates
nonlinearly, yielding stable periodic temporal oscillations of
spatially uniform waves.

For finite-frequency unstable solutions, the matrix M3 has
two complex-conjugate eigenvalues with positive real parts
and one negative eigenvalue. Such a combination of eigenval-
ues can only occur when A > 2, and then there are two cases,
depending on whether A is smaller or larger than 3 + C. In the
former case, a finite-frequency instability occurs for detunings
α > αh, and powers in the interval Ph− < P < Ph+; αh and
Ph± are defined in Table I. We show an example in the bottom
right panels of Figs. 1 and 2. In the latter case the instability
can occur for any α for P > Ph−; we show an example in the
bottom left panels of Figs. 1 and 2.

V. CNOIDAL WAVES

The growth of finite-wavelength perturbations in modula-
tionally unstable continuous waves can saturate to yield stable
stationary spatially periodic waves, also known as cnoidal
waves, Turing rolls, and perfect soliton crystals. In practice,
cnoidal waves can be accessed by fixing the pump detuning
α and raising its amplitude F to the point where continuous
waves become modulationally unstable.

When thermal effects are negligible (C = 0) there are two
cases: If α < αc(0) = 41/30, the bifurcation is supercritical,
which means that when F is slightly above the instability
threshold Fmi, the growth saturates to a cnoidal wave that is a

quasiharmonic perturbation of the continuous-wave solution,

ψs(x) = ψc + ψa cos(kmx + φ), (24)

where km is the wave number of the fastest growing mode, φ

is an arbitrary phase, and the amplitude [15]

ψa ∝ √
F − Fmi. (25)

When α > αc, there are no stationary stable waveforms that
closely approximate continuous waves. Nevertheless, insta-
bility growth can saturate in cnoidal waves whose amplitude
variations are not small [19].

Like all stationary waveforms, a cnoidal wave with C > 0
can be mapped via Eq. (12) to a nonthermal cnoidal wave
with a smaller detuning α0 = α − CPs, so the set of possible
cnoidal waves (but not their stability) is independent of C.
In general, since Ps depends in a complicated manner on α

and F , the mapping in Eq. (12) cannot easily be used to
relate the stationary cnoidal wave for different thermal param-
eters. Nevertheless, weakly nonlinear cnoidal waves near the
supercritical part of the modulational instability curve have
mean power Ps ≈ Pc ≈ 1 as discussed after Eq. (21), and the
threshold curves (yellow lines in Fig. 1) are shifted to larger
α as C increases. It now follows from Eq. (12) that this rule
remains true also in a small region above the threshold. That
is, if a cnoidal wave [Eq. (24)] is a stationary solution for some
α0 and F close to Fmi at C = 0, then it is also a stationary
solution for the same F and α = α0 + C for any C � 0. In
particular it follows that the bifurcation is supercritical for a
given C when

α < αc(C) = 41
30 + C. (26)

This simple result has a significant implication: As ex-
plained above, broadband frequency combs with solitonlike
envelopes can be produced from highly red-detuned perfect
soliton crystals, and can be deterministically accessed from
long-wave modulational instabilities [18,19]. When C = 0 the
largest wavelength that can be accessed in this way is pro-
duced by crossing the instability curve at α = αc. However,
as C increases the detuning αt at the tangency point between
the modulational instability curve and the cw coexistence
wedge (circled in Fig. 1; see Sec. IV A above and Table I)
increases more slowly than αc, so that αc overtakes αt when
C = Cs = 361/660 ≈ 0.55. For C > Cs, therefore, the mod-
ulational instability curve consists entirely of supercritical
bifurcation points, and the optimal deterministic path in the
α-F parameter space for accessing solitonlike cnoidal waves
is via continuous-wave solutions with detuning αt .

Since Cs > Cu (see Sec. IV A), the modulational instabil-
ity for C > Cs affects the upper branch of continuous-wave
solutions. It follows that, for the deterministic generation of
wideband frequency combs in any microresonator with an
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FIG. 3. Left: Solid lines show deterministic access paths in the pump parameter space leading from the lower tip of the modulational
instability curve to soliton crystals for several choices of the thermal parameters A = C = 0, 2, 4, 6, 8, 10 from left to right. The access paths
are related by the exact mapping in Eq. (12), so that cnoidal waveforms with the same F are identical. Stability properties, however, depend
on the thermal parameters, and the cnoidal waves on the access paths for C = 8 and C = 10 become unstable before reaching F = 2. The
horizontal dashed lines show the values of F for which the intensity profiles are shown in the right-hand panel. Dashed curves show a small
part of the modulational instability threshold for the respective values of C. Right: The intensity profile |ψs(x)|2 for stable cnoidal waves at
several points on the access paths shown in the left-hand panel, located at F = 1.01, 1.2, 1.5, 2.0 (where applicable).

appreciable thermal response, the pump power has to be raised
at a fixed frequency with α <

√
3, in order to bypass the

wedge of coexistence in the pump parameter space. Then
the pump frequency has to be sharply detuned to the red at
fixed power, to reach the optimal access point with α = αt ≈
1 + C. We show an example in the top right panel of Fig. 1.

After crossing the modulational instability threshold and
the consequent formation of a quasiharmonic cnoidal wave,
soliton crystals can be obtained by further increasing the
power and detuning of the pump [18,19]. Figure 3 (left) shows
several access paths for different values of C, chosen to give
identical waveforms that are connected by the exact mapping
in Eq. (12) for equal pump amplitudes. The right-hand panel
of Fig. 3 shows cnoidal wave solutions at several points along
the access paths.

VI. THERMAL OSCILLATIONS

In Sec. IV B we found that when A > 2, there is a region
in the pump-parameter plane where continuous waves are
unstable with a complex-conjugate pair of eigenvalues with
positive real parts. The boundary of the region of instability
in the α-F parameter space is a line of Hopf bifurcations
that occur when a pair of stability eigenvalues ±iωh cross the
imaginary axis. It follows from the Hopf bifurcation theorem
[45] that a periodic solution of the equations of motion with
frequency ωh is created at the bifurcation points.

There are two types of Hopf bifurcations: When the bi-
furcation is supercritical, a stable periodic orbit is created
on the unstable side, while at a subcritical bifurcation an
unstable periodic orbit is created on the stable side. The oscil-
latory instability occurs when the cw power Pc becomes larger
than the lower threshold Ph−. Close to the bifurcation the
oscillations are quasiharmonic with amplitude proportional to√|P�|, where P� = Pc − Ph−.

The quasiharmonic oscillations are well approximated by
the linear modes of the stability matrix M3, with an amplitude

that is determined by the balance of the linear and nonlinear
terms. Since the amplitude is small, the nonlinearity is weak,
and therefore the solution can be calculated in weakly nonlin-
ear perturbation theory [45]. The result of this calculation is
that close to the bifurcation⎛
⎝ ψ (t )

ψ (t )∗

(t )

⎞
⎠ =

⎛
⎝ ψc

ψ∗
c

−C|ψc|2

⎞
⎠ + √±P�(Kv+eiωt + K∗v−eiωt ),

(27)

where ψc is the continuous-wave amplitude, K is a constant,
ω = ωh + O(P�), and v± are the ±iωh normalized eigenvec-
tors of the matrix M3 [see Eq. (23)] with phase chosen to make
their 
 component real. The sign under the square root is
positive (negative) for supercritical (subcritical) bifurcations,
|K| is fixed by the nonlinear terms, while the phase of K is
determined by the initial conditions.

In Fig. 4 we show examples of stable oscillatory solutions
of the dynamical Equations (5) and (6). The panels of the first
row show quasiharmonic oscillations for pump amplitudes
slightly above threshold. When the pump power increases
further, the oscillations quickly become strongly nonlinear,
as seen in the second and third rows of Fig. 4. In Fig. 5 we
show the nonlinear response coefficient |K| of quasiharmonic
oscillations as a function of the pump detuning α and cooling
coefficient B for two values of C.

The weakly nonlinear analysis reveals that there are pa-
rameter values where the Hopf bifurcation is subcritical, for
example in the white regions in the right-hand side of both
panels of Fig. 5. For these parameter values there are no
small-amplitude stable thermal oscillations near the threshold.
Nevertheless, in a number of these cases where we studied
numerically the growth of instability following a subcriti-
cal bifurcation, we always found that it saturates at strongly
nonlinear stable oscillations. These thermal oscillations are
qualitatively similar to the oscillations shown in the second
and third rows of Fig. 4.
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FIG. 4. Steady-state thermal oscillations of a spatially uniform wave envelope field in a Kerr resonator. The deviations � of the field
envelope ψ − ψc (real part in red, imaginary part in blue) and of the thermal detuning 
 − 
c (green) from the constant values are shown as
a function of time t . The left-hand column shows oscillation with thermal parameters B = 2, C = 5, and detuning α = 8, and the right-hand
column shows oscillation with B = 0.6, C = 10, and α = 15. The pump amplitude is F = Fh + F�, where Fh is the instability threshold, and
F� = 0.0005, 0.1, and 2.0 in the top, middle, and bottom rows, respectively. The quasiharmonic oscillations of the top row are well described
by weakly nonlinear analysis. (Note different vertical axis scales.)

VII. CONCLUSIONS

Dissipative heating plays a significant role in the evolution
of optical waveforms in Kerr microresonators. For theoretical
modeling of this effect, the Lugiato-Lefever equation must be
coupled to an equation for the mean temperature of the optical
mode volume. The temperature evolution then depends on two
response coefficients, describing the rate of heating due to
absorption of light, and the rate of cooling due to diffusion.
The ratio of these coefficients is the dimensionless thermal
sensitivity parameter C. When C is of order 1 or larger, as it
is for most Kerr microresonators in which frequency combs
have been observed, the existence and stability properties of
cavity waveforms depend strongly on the thermal parameters.

Here we focused on continuous waves and cnoidal waves,
where for pump parameters α and F of order 1, the mean
power P is also of order 1. Single soliton waveforms, on the
other hand, have mean power P = 1/L, so that the strength

of the thermal effects for single solitons is determined by
C/L which is typically small. It means, however, that thermal
effects for single soliton waveforms can become significant
when L decreases, which can happen either when the cavity is
smaller, or when the dispersion is larger.

An important simplifying feature of the thermo-optics of
microresonators is that steady-state waveforms experience an
effective detuning that is shifted from the nominal detuning
by C times the mean power, so that there is an exact map-
ping between the set of thermal and nonthermal steady-state
waveforms. However, the stability properties of the wave-
forms depend on the details of the thermal response, and
cannot in general be deduced from those of the nonthermal
system.

We showed that dissipative heating has three important
consequences for the stability of continuous waves and the
evolution of the cavity waveform following the onset of
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FIG. 5. The nonlinear response parameter |K| of the uniform instability Hopf bifurcation as a function of the pump detuning α and
cooling rate B for thermal sensitivity ratio C = 5 (left) and C = 10 (right). The plots are colored in parameter regions where the bifurcation
is supercritical. Uncolored regions correspond either to points where the bifurcation is subcritical (large-α regions) or parameter values where
the Hopf bifurcation does not occur at all (small-α regions).

instability. First, as the thermal sensitivity parameter in-
creases, the coexistence wedge, where there are three possible
solutions, moves to lower powers in the pump parameter
plane, blocking the constant-frequency path to red-detuned
comb-producing waveforms. At the same time, the mod-
ulational instability threshold curve, where comb-forming
cnoidal waves bifurcate from continuous waves, moves to
higher detuning. Together, these two effects imply that soliton
crystals can be produced deterministically by adiabatically
following a path of pump parameters that bypasses the co-
existence wedge by first increasing pump power at constant
frequency and then tuning the frequency to the red at constant
power. This protocol has not yet been implemented experi-
mentally.

The third consequence of the thermal response is the emer-
gence of an instability mode of the continuous waves that
produces temporally periodic oscillations of spatially uniform
waveforms. Thermal oscillations in Kerr resonators have been
often observed experimentally, and our analysis shows how
to describe them with a simple three-degrees-of-freedom dy-
namical system. We showed that oscillations can only occur
when the heating rate is larger than a threshold value which
is universal in dimensionless units. It is likely that the mech-
anism that drives the thermal instabilities and oscillations in
continuous waves can cause similar instabilities and oscil-

lations of cnoidal waves, and perhaps soliton waveforms as
well, but this question is beyond the present scope.

In experiments, an effective heating rate large enough to
produce thermal oscillations has been achieved by lowering
the response coefficient dωc/dT which appears in its denomi-
nator [see Eq. (9)], either by a cancellation between competing
effects as in Ref. [41] or by operating near the temperature
where the response coefficient changes sign [43]. Thermal
oscillations in experiments that have been reported so far were
strongly nonlinear. The analysis presented here shows that for
a wide range of parameters the Hopf bifurcation that gives rise
to the oscillations is supercritical, so that weakly nonlinear
quasiharmonic oscillations are expected as well; however, the
parameter band where the oscillations are quasiharmonic is
narrow so that a careful and slow tuning of the pump param-
eters through the bifurcation will be needed to observe them
experimentally.
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