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Abstract: The Brillouin instability (BI) due to stimulated Brillouin scattering (SBS) and the
transverse (thermal) mode instability (TMI) due to stimulated thermal Rayleigh scattering (STRS)
limit the achievable power in high-power lasers and amplifiers. The pump power threshold for
BI increases as the core diameter increases, but the threshold for TMI may decrease as the core
diameter increases. In this paper, we use a multi-time-scale approach to simultaneously model BI
and TMI, which gives us the ability to find the fiber diameter with the highest power threshold.
We formulate the equations to compare the thresholds of the combined and individual TMI and
BI models. At the pump power threshold and below, there is a negligible difference between
the full and individual models, as BI and TMI are not strong enough to interact with each other.
The highest pump threshold occurs at the optimal core size of 43 µm for the simple double-clad
geometry that we considered. We found that both effects contribute equally to the threshold, and
the full BI and TMI model yields a similar threshold as the BI or TMI model alone. However,
once the reflectivity is sufficiently large, we find in the full BI and TMI model that BI may trigger
TMI and reduce the TMI threshold to a value lower than is predicted in simulations with TMI
alone. This result cannot be predicted by models that consider BI and TMI separately. Our
approach can be extended to more complex geometries and used for their optimization.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Stimulated Brillouin Scattering (SBS) and stimulated thermal Rayleigh scattering (STRS) can
lead respectively to the Brillouin instability (BI) and the transverse mode instability (TMI) which
limit the output power in optical fibers [1–3]. For BI, a forward-propagating optical mode couples
to an acoustic mode and the same optical mode propagating in the backward direction (Stokes
mode) [4–10]. For TMI, an optical mode couples to a higher-order mode (HOM) that has nearly
the same frequency [11–18] and a transverse thermal mode. In both cases, the instability is
characterized by exponential growth that leads to a sharp pump power threshold, beyond which
significant power is transferred to modes other than the forward-propagating fundamental mode.
Both instabilities impose limits on the output power of Yb3+-doped fiber amplifiers, and the
interaction between these two instabilities is not well understood. Also, the limits that they
impose depend differently on the fiber core diameter. As the fiber core diameter increases, all
else being equal, the BI threshold increases because the optical intensity decreases for a fixed
power. However, as the fiber core diameter increases, the TMI threshold may decrease due to
an increased interaction between the fundamental mode and the HOM. The wavenumbers of
the HOMs at the same frequency come closer to the wavenumber of the fundamental mode,
easing the coupling condition for the thermal mode so that TMI is more easily triggered. Thus, a
tradeoff typically exists between BI and TMI as the diameter increases.
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Figure 1 illustrates schematically the dependence of the pump power threshold for the individual
BI and TMI effects. Using mitigation techniques for BI such as phase modulation [7,8] will
likely decrease the core diameter where both BI and TMI play a roughly equal role in limiting the
pump power threshold. On the other hand, mitigation techniques for TMI, such as fiber bending
[19,20], fiber tapering [21], gain filtering [22], use of specially designed photonic crystal fibers
[23], and detuning of the pump and signal wavelengths [24,25] will increase the core diameter
at which both BI and TMI play an equal role in limiting the pump power threshold. Thus, it is
typically the case that the maximum power threshold is obtained for designs in which BI and
TMI play a roughly equal role in limiting the power. Hence, it is critical to develop a model that
can study the interaction between BI and TMI.

Fig. 1. Illustration of the tradeoff between the Brillouin instability and the transverse mode
instability.

In this paper, we determine the optimal fiber core diameter for an Yb3+-doped fiber amplifier
with a simple double-clad geometry. Previous research has examined the tradeoff among BI and
TMI [26–28]. Here, we formulate the full BI and TMI model and compare this full model to
their respective individual models at different pump powers in order to highlight the differences
between them. Simultaneously modeling BI and TMI is challenging because the time scales
on which they develop are different. BI, which is associated with acoustic phonons, has a
characteristic time scale on the order of nanoseconds, while TMI, which is associated with
thermal diffusion, has a time scale on the order of milliseconds. This large difference in time
scales implies that a multi-time-scale approach must be used. For that reason, almost all work to
date has considered these two instabilities separately. In this paper, we describe a multi-time-scale
approach that allows us to simultaneously model BI and TMI. This approach can be extended to
more complex geometries in which the overlap of the fundamental mode with the acoustic mode,
the thermal mode, and HOMs is minimized. That in turn will make it possible to optimize the
optical fiber designs to increase the threshold powers.

2. Modeling scheme

Figure 2 shows the time discretization scheme for the simulation. Between two TMI iteration
steps, which are separated by a time on the order of 1 ms, we take many small time steps, which
are separated by a time on the order of 1 ns in order to take BI into consideration. Once the modes
have reached steady state on the BI time scale, we jump to the next TMI step. For simplicity, we
keep the z-step the same when modeling both BI and TMI. At a minimum, three optical modes
representing the forward fundamental mode, forward HOM, and backward fundamental Stokes
mode, one thermal mode, and one acoustic mode must be considered for the full BI and TMI
simulation.
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Fig. 2. Time step scheme. After each TMI time step, a series of BI steps are taken until the
fundamental mode and Stokes mode reach steady state.

Figure 3 shows an illustration of all the modes that we keep in our model. To model TMI, we
include the fundamental mode and one HOM. Most theoretical studies of TMI to date focus on
evolution after the onset of TMI when the fundamental mode is significantly depleted. These
studies are of little interest for most applications, including applications to high-energy laser
beam production, because once forward propagating HOMs have a total power that exceeds
about 1% of the output power, the beam quality is unacceptably degraded [12]. Hence, only
one HOM is needed to determine the onset of TMI. In BI modeling, we only account for the
backward-propagating Stokes mode that is generated by the fundamental mode since we only
consider cases where the HOM does not make up the majority of the output power at or below
the threshold.

Fig. 3. Illustration of the modes for the BI and TMI simulations. The pump (kpump),
fundamental mode (kfundamental), and HOM (kHOM) propagate in the positive z-direction
and have positive wavenumbers. The Stokes mode (kStokes) propagates backwards and has a
negative wavenumber. We represent the density oscillation for kacoustic, and the oscillation
in the transverse temperature flow for kthermal.

We must also clarify the nomenclature that we use for the different modes. In the TMI
literature, it is usual to refer to the optical modes as the pump mode, fundamental mode, and
HOM. However, in the BI literature, it is usual to refer to the optical modes as the pump mode
and Stokes mode. Although, there is no ambiguity for the Stokes mode, the pump mode in the
BI literature corresponds to the fundamental mode in the TMI literature. In this paper, we will
refer to the mode that pumps the laser amplifier as the pump mode, the mode that is amplified as
the fundamental mode, the optical mode generated by TMI as the HOM, and the optical mode
generated by BI as the Stokes mode.

3. Model for BI and TMI

In much of the current literature, the equations that describe BI use an electric field amplitude
for each mode that has been normalized so that the power for mode l, Pl, is given by Pl =
(1/2)ncϵ0Aeff |El |

2, where Aeff is the effective area [29]. This choice of normalization is possible
since both the forward-propagating fundamental mode and the backward-propagating Stokes
mode have the same transverse mode profile. In the case of TMI, this normalization is no longer
possible since the fundamental mode and the HOM have different mode profiles. Moreover, as
Kobyakov et al. [30] have pointed out, this choice is of limited utility since the definition of Aeff
becomes ambiguous, and it is important to correctly account for the overlap between the optical
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and acoustic modes when computing gain coefficients. For that reason, we will consistently use
field amplitudes Al that are normalized so that Pl = (1/2)cnϵ0 |Al |

2 where Al = El(Aeff,l)
1/2. The

amplitudes of the fundamental mode, HOM, and Stokes mode will be denoted as AF, AH, and AS,
respectively.

In this paper, we will focus on fibers with a simple geometry in which the interacting modes
are all LP modes in a single polarization so that we may write the electric field for mode l as [31]

El(r⊥, z, t) = x̂1
2
[Al(z, t)El(r⊥)exp(iβz − iωt) + c.c.], (1)

where x̂ denotes the mode polarization direction, Al (l=F, H, or S) denotes the mode amplitude,
and El(r⊥) is the transverse mode profile, normalized so that

∫
d2r⊥ |El(r⊥)|2 = 1. We note that

ES(r⊥) = EF(r⊥). We then find that the equations describing TMI may be written as [32]

dAF
dz
= CFFAF + CFHAH,

dAH
dz
= CHHAH + CHFAF,

(2)

where
CFF =

iω2

βc2 n0

∫
d2r⊥ |EF |

2
∆n0,

CFH =
iω2

βc2 n0

∫
d2r⊥E∗

FEH∆n+,

CHF =
iω2

βc2 n0

∫
d2r⊥EFE

∗
H∆n−,

CHH =
iω2

βc2 n0

∫
d2r⊥ |EH |

2
∆n0.

(3)

Here, the quantities CFF, CFH, CHF, and CHH are optical gains or losses influenced by TMI. These
gains or losses do not vary on the BI’s nanosecond time scale since they are only dependent
on the change in refractive index and temperature, which vary on the order of milliseconds. In
Eq. (3), we are using the phase-matched model [32], in which we set

∆n(z, t) = ∆n0(z, t) +
1
2
[∆n+(z, t)exp(i∆βz) + ∆n−(z, t)exp(−i∆βz)], (4)

where ∆n(z, t) is the total change in the refractive index due to TMI and ∆β = βH − βF represents
the difference in propagation constants of the fundamental mode and HOM. The basic assumption
of the phase-matched model is that all quantities have a component that varies slowly along the
fiber compared to the beat length 2π/∆β and a component that oscillates at the beat length period,
whose complex amplitude varies slowly compared to the beat length. In the phase-matched
model, we ignore contributions to ∆n(z, t) from higher harmonics of ∆β. It was previously shown
that this approximation greatly speeds the computational calculations with no loss in accuracy
[32] since the contributions of higher harmonics that are proportional to exp(im∆βz) with m>1
are negligible. Conversely, we have |∆β| ≪ βH, βF ≈ β.
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We model BI [4,7] including the contributions from TMI using the equations

∂AF
∂z
+

1
νg

∂AF
∂t
= CFFAF + CFHAH + iκASρ,

∂AH
∂z
+

1
νg

∂AH
∂t
= CHHAH + CHFAF,

−
∂AS
∂z
+

1
νg

∂AS
∂t
= CFFAS + iκAFρ

∗,

∂ρ

∂t
+ π∆νBρ = i

Λ

Aeff,F
AFA∗

S + f ,

(5)

where ρ(z, t) is the acoustic wave density, κ andΛ are the optical and acoustic coupling parameters
[4], ∆νB is the Brillouin linewidth, and Aeff,F is the effective area for the fundamental mode
and Stokes mode. The parameters CFF, CFH, CHF, and CHH are the TMI contributions to the
evolution of different fields according to Eq. (3). The quantity νg represents the group velocity of
the fundamental mode. Since the frequency difference between the fundamental mode and HOM
is on the order of kHz, we assume that the difference in group velocities between the two modes
is negligible. Since the Stokes mode and fundamental mode share nearly the same transverse
mode profile, and the frequency shift between them is only on the order of tens of GHz [33,34],
we assume that gain and group velocity for the Stokes mode is the same as for the fundamental
mode. We assume that the acoustic noise source f (z, t) is white thermal noise [4,35], which is
delta-correlated such that

⟨f (z, t)f ∗(z′, t′)⟩ = Qδ(z − z′)δ(t − t′). (6)

Here, the coefficient Q is the phonon strength parameter and is expressed as

Q =
4πkTρ0∆νB

v2Aeff
, (7)

where k is the Boltzmann constant, T is the temperature along the fiber, and v is the speed of
sound through the material.

To model the heat flow in the fiber, we write

ρ0C
∂T0
∂t
+ κ∇2

⊥T0 = Q0, ρ0C
∂T+
∂t
+ κ∇2

⊥T+=Q+, (8)

where, consistent with the phase-matched model [32], we write the temperature as T =
T0+(1/2)[T+ exp(i∆βz)+T− exp(−i∆βz)], and we assume that T0, T+, and T− = T∗

+ all vary slowly
along z compared to the beat length 2π/∆β. We similarly write Q = Q0 + (1/2)[Q+ exp(i∆βz) +
Q− exp(−i∆βz), where Q0, Q+, and Q− = Q∗

+ all vary slowly compared to the beat length. More
details on the phase-matched model that we use here can be found in [32].

When including BI in our model, we only consider the Stokes mode generated by the
fundamental mode. Since we focus on the power threshold, the power in the HOM is low (1%)
compared to the power in the fundamental mode. Any Stokes light generated from the HOM
would be orders of magnitude smaller than the Stokes light generated from the fundamental mode
and would make a negligible contribution to the reflectivity. Also, we only consider the forward
propagating fundamental mode as any backward propagating fundamental modes would be small
at or below the threshold.

Since the gain and temperature profiles vary on the scale of milliseconds, they may be treated
as time-independent during the BI evolution, which occurs on the scale of nanoseconds. This
implies that CFF, CFH, CHF, and CHH are fixed with respect to the BI time step. After each TMI
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step, we solve the BI equations, taking time steps on the order of picoseconds until a steady
state is reached. When modeling the BI portion of the simulation, we set the temporal step size
∆t = ∆z/νg, where ∆z is the step size in the longitudinal direction [4,7]. In each BI time step, we
first propagate the fundamental mode and the HOM in the forward direction. Then, we propagate
the Stokes mode in the backward direction. This relaxation algorithm is commonly used for
two-point boundary value problems [36], where AF(z = 0, t) = [2PF0/(cnϵ0)]1/2, AS(z = L, t) = 0,
and PF0 is the input optical power of the signal in fundamental mode. At the beginning of the
simulation, we assume that AS(z, t<0) = 0. We propagate the optical fields for 40 fiber transient
times to ensure that the power reaches a steady state, and we then take a statistical average of the
Stokes mode at the front of the fiber and the power at the fiber output for an additional 40 fiber
transient times. The transient time equals L/νg, which is 7.7 ns in this case. Because we use
a noise source to seed the BI process, we must take a statistical average, which better reflects
experimental measurement.

Table 1 shows the fiber parameters used for the simulation [4,15]. The ratio of cladding
diameter, dclad, to core diameter, dcore, is fixed at 5 to ensure that the total signal gain is the same
within 5% for all core sizes when the pump power is below threshold. The overall goal of our
simulation is to vary the core diameter to find the highest threshold when both BI and TMI are
considered. Consistent with prior work [15,32], we assume that the frequency difference between
the fundamental mode and the HOM is 1 kHz. We consider a numerical aperture of 0.03, which
is consistent with the numerical apertures reported in experiments [37–39]. We use a 10th-order
super-Gaussian profile for the rare-earth doping concentration in the fiber cross-section [40].

Table 1. Simulation parameters

Fiber length L 1.6 m Doping concentration N0 6 × 1025 m−3

Core index ncore 1.45031 Brillouin linewidth ∆νB 57 MHz

Numerical aperture N.A. 0.03 Heat lifetime τ 0.85 ms

Signal power Psig 30 W Pump wavelength λpump 977 nm

HOM seed power PHOM 3 mW Signal wavelength λsignal 1064 nm

Pump emission σ
(e)
p 1.87 × 10−27 m2 Pump absorption σ

(a)
p 1.53 × 10−24 m2

Signal emission σ
(e)
s 6 × 10−27 m2 Signal absorption σ

(a)
s 3.58 × 10−25 m2

z step ∆z 8 × 10−5 m Density ρ0 2200 kg/m3

t step,TMI ∆tTMI 20 µs Heat capacity C 703 J/(kg − K)

t step, BI ∆tBI 0.774 ps Thermal conductivity κ 1.38 W/(m − K)

Transverse step ∆x,∆y 2 µm Initial temperature T 300 K

In this paper, we focus on the contribution to TMI due to the quantum defect heating [13–15].
It has been shown that photodarkening can also contribute to TMI [24,41]. Photodarkening
contributes to the thermally induced index grating coherently with quantum defect heating [17].
Hence, the heat source term and absorption term from photodarkening [24] could in principle be
added to the phase-matched model for TMI [32].

4. BI and TMI threshold at core diameters of 30 and 45 µm

When we refer to the threshold, we are always referring to the pump power threshold that is
limited by either BI or TMI. We define the threshold for BI, Ppump,BI, as the input pump power
at which the reflectivity defined as ρS = PS(z = 0)/[PF(z = L) + PS(z = 0)] reaches 1%, where
the overline indicates an average over the 40 transient fiber times tf = Ln/c, as described in the
previous section. This definition of reflectivity is used in the gain fiber so that the reflectivity
represents the ratio of the reflected power relative to the amount of total output power that is
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reflected, and the lower and upper bounds of ρS in this definition are 0 and 1, which is consistent
with the definition of the HOM content. To ensure that the power reaches a steady state due to
TMI, we also average the reflectivity in the full model over the last 50 TMI steps. We define
the threshold for TMI, Ppump,TMI, as the input pump power at which the HOM content defined
as ρH = max{PH(z = L)/[PF(z = L) + PH(z = L)]} reaches 1% [32]. We write the maximum in
the definition since the impact of TMI is determined by this maximum value [15,32]. When we
consider BI and TMI together, the threshold, Ppump,full, is defined as the pump power at which the
maximum of the reflectivity ρS or the HOM content ρH reaches 1%. We study the thresholds
for BI and TMI using the full model described in the previous section for core diameters of 30
and 45 µm. The dashed blue and dotted red curves in Fig. 4 show reflectivity, ρS, and the HOM
content, ρH, respectively, as a function of pump power. For fibers with the smaller core diameter
of 30 µm, shown in Fig. 4(a), the pump power is 197 W when the reflectivity ρS reaches 1%,
and the pump power is 323 W when the HOM content ρH reaches 1%. In this case, BI plays a
more important role and reaches threshold at a lower pump power since the relatively small core
size increases the intensity. By contrast, for fibers with the larger core diameter of 45 µm, the
pump power is 391 W when the reflectivity ρS reaches 1%, and the pump power is 348 W when
the HOM content ρH reaches 1%. In this case, TMI is the dominant effect that limits the pump
power threshold due to a stronger coupling between the fundamental mode and the HOM. When
TMI is the limiting nonlinear effect, decreasing the core diameter improves the TMI threshold.

Fig. 4. Reflectivity ρS due to BI and the HOM content ρH due to TMI as a function of
pump power for a core diameter of (a) d = 30µm and (b) d = 45 µm. The results here are
obtained using the full model that includes both BI and TMI.
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5. BI and TMI thresholds as a function of core diameter

In Fig. 5(a), the solid green curve shows the threshold Ppump,full, which is the power, including the
effects of both BI and TMI. We also show Pfund, which is the output power for the fundamental
mode at the pump power threshold Ppump,full. As explained in the previous section, increasing
the diameter increases the modal area and lowers the intensity, which helps to improve the BI
threshold. However, further increasing the diameter eventually increases the impact of the HOM
in our study, which lowers the TMI threshold. The cutoff diameter in our study for the HOM
is at 27.2 µm. Decreasing the core diameter to values near the cutoff of the HOM will cause
the HOM to be less confined and greatly increase the TMI threshold. In Fig. 5(b), the dashed
and dotted green curves show the reflectivity ρS and the HOM content ρH, respectively, for the
full model at the corresponding pump power indicated by the green curve in Fig. 5(a). Since
our definition of threshold is when either the reflectivity or the HOM content reaches 1%, the
curves in Fig. 5(b) will be capped at 1%. Figure 5(b) clearly indicates the limiting effect on the
instability corresponding to the pump power threshold curve in Fig. 5(a). The core diameter of 43
µm yields the highest threshold; at that diameter the threshold contributions due to BI and TMI
are equal. The dash-dotted orange curve in Fig. 5(a) shows the output power at the pump power
threshold, which indicates the maximum output power at the optimal core diameter of 43 µm.

Fig. 5. (a) Pump power threshold when we consider BI and TMI altogether or BI and TMI
separately. The fundamental mode power Pfund shows the output power for the fundamental
mode at the pump power threshold Ppump,full. (b) Reflectivity ρS and HOM content ρH for
the full model at the corresponding pump power threshold, Ppump,full, indicated by the green
curve in (a).

In Fig. 5(a), the dotted red curve shows the threshold power, Ppump,TMI, when only TMI is
present. The dashed blue curve shows the threshold power, Ppump,BI, when only BI is present. At
a small diameter of 20 µm, the full model agrees with the BI only model, that only includes BI, as
there is a negligible influence on the pump power threshold due to TMI. At a large diameter of 60
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µm, the threshold for the full model agrees with the threshold for the TMI only model, the model
that only includes TMI, as BI makes a negligible contribution to the pump power threshold.

6. Comparison of the individual and full models

Figure 4 also shows that when the full BI and TMI model is considered, the TMI threshold for a
core diameter of 30 µm is lower than the threshold for a core diameter of 45 µm. This result is
contrary to the expectation that decreasing the core diameter should increase the TMI threshold.
In Fig. 4(a), we see that after the BI threshold is reached at 197 W, there is significant reflection
of the output power. We observe that the onset of TMI may occur at a lower-than-normal pump
power when the reflectivity due to BI is sufficiently high and the pump power is above the BI
threshold so the reflectivity is greater than 1%.

Next, we study when BI will trigger TMI. Figure 6 shows the full model reflectivity and HOM
content compared to the HOM content from the TMI only model as a function of pump power.
The core diameter is 30 µm. The dashed blue and dotted red curves are replotted from Fig. 4(a)
so that the comparison may be easily made. The solid green curve shows the HOM content from
the TMI only model. The dotted black horizontal line in Fig. 6 marks the 1% threshold criterion.
Figure 6 shows that when the pump power is under 200 W, the reflectivity is low, and there is a
negligible difference between the HOM content predicted by the TMI only model and the full
model. However, further increasing the pump power past 200 W yields an increase in reflectivity
that then triggers TMI in the full model. The TMI threshold with the full model is at a pump
power of 323 W compared to the TMI only threshold of 946 W.

Fig. 6. Reflectivity and HOM content from the full model and the TMI only model as a
function of pump power. The core diameter is 30 µm.

In this example, the onset of BI at 1% does not trigger TMI, but rather TMI is trigged by BI
when the reflectivity reaches about 10%. If there is significant reflectivity, much greater than the
1% used to denote the onset of BI, the interaction between the Stokes and fundamental mode
causes the fundamental mode to fluctuate stochastically along the fiber. Rather than seeding the
HOM directly, these fluctuations may make it possible for the fundamental mode and the HOM
to interact. This result is consistent with experiments of Lee et al. [42] who found that stimulated
Brillouin scattering may induce TMI and that the TMI threshold closely follows the BI threshold.
This behavior is not captured by previous models that consider TMI or BI separately.

To gain a better understanding of the interaction between the TMI and BI, we now compare the
full model and individual models at different power levels so that any differences between them
may be distinguished. Figures 7(a)-(d) show the full model reflectivity ρS,full, BI only reflectivity
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ρS,BI, full model HOM content ρH,full, and TMI only HOM content, ρH,TMI as a function of pump
power and core diameter. In Fig. 7(a), the reflectivity increases as the power increases or the core
diameter decreases.

Fig. 7. (a) Reflectivity from the full model, (b) reflectivity from the BI only model, (c)
HOM content from the full model, and (d) HOM content from the TMI only model as a
function of pump power and core diameter. Black circles in (a)-(d) show pump powers of
150, 250, and 350 W at a core diameter of 30 µm.

To further understand the difference in predicted reflectivity and HOM content between the
individual BI and TMI models to the full model, we show the difference in predicted reflectivity
∆ρS = |ρS,BI − ρS,full | and HOM content ∆ρH = |ρH,TMI − ρS,full |, between the full model and
individual models in Fig. 8. The temperature in the full model increases due to the quantum
defect, which can lead to a difference in the predicted reflectivity values between the full model
and the BI only model, as shown in Fig. 8(a). Figure 8(b) shows that when the full model is under
the BI threshold, there is a negligible difference in the predicted HOM content between the full
model and the TMI only model. However, once there is significant reflectivity at dcore = 30 µm
and Ppump = 350 W, the HOM content predicted by the full model differs from the HOM content
predicted by the TMI only model.

To compare the HOM content that is predicted by the different models, we study the evolution
of the reflectivity and the HOM content as a function of time for the three regions marked with
circles in Fig. 7. Figures 9(a)-(c) show the reflectivity and the HOM content for pump powers
of 150, 250, and 350 W, respectively, as a function of time. The core diameter is 30 µm. The
solid blue, dashed green, and solid red curves represent the HOM content from a TMI only
simulation ρH,TMI, HOM content for the full model ρH,full, and reflectivity from the full model
ρS,full, respectively. When the pump power is 150 W, the averaged reflectivity is 0.043% which
is under the BI threshold. The HOM content predicted by the full model and by the TMI only
model are nearly identical. In this case, adding BI in the model does not have any impact on
TMI. At a pump power of 250 W, the averaged reflectivity is near 8.9%. Both the TMI only
model and full model lead to a small HOM content below 1%. The difference in the peak HOM
content is also small. Hence, around the BI threshold, the interaction between BI and TMI is
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Fig. 8. Absolute value of the difference in the predicted (a) reflectivity and (b) HOM content
between the full and individual models.

not significant, as shown in Fig. 9(b). However, when the pump power increases to 350 W, the
averaged reflectivity reaches 27%. The higher reflectivity leads to amplitude modulation of the
signal and triggers TMI, as shown in Fig. 9(c). In this case, the large BI leads to significant
power transfer between the fundamental mode and the Stokes mode. Hence, there is a substantial
difference in the time evolution of the HOM contents between the full model and the TMI only
model, which leads to different contours in Figs. 7(c) and (d).

Fig. 9. Reflectivity and HOM content as a function of time for pump powers of (a) 150 W,
(b) 250 W, and (c) 350 W with a core diameter of 30 µm.
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7. Conclusions

BI and TMI have been modeled separately in the past, but including both effects in one simulation
is necessary to determine when and how they interact particularly since both effects have roughly
equal magnitudes at the optimal operating points in the parameter space. We formulate the
equations to model both BI and TMI in a single simulation. For the system model and parameters
that we considered, the optimal core diameter with a maximum power threshold is around 43
µm. For small core sizes less than the optimal core diameter of 43 µm, BI dominates and TMI
plays little role in limiting the pump power threshold. For core sizes that are greater than 43 µm,
the BI effect is negligible, and the full model with both BI and TMI yields a similar threshold
as the threshold for TMI alone. The difference between the full model and individual model
pump power thresholds is negligible in this case, as BI and TMI are not strong enough to interact
with each other. At large pump powers and small core diameters, where the reflectivity is large,
BI may trigger TMI due to modulation of the power in the fundamental mode, so that the TMI
threshold is significantly lower than is the case when modeling TMI alone.

Combining both BI and TMI in a single simulation makes it possible to simultaneously
optimize the fiber design to minimize both effects and yield the highest power thresholds.
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