business tips education articles new tips business education opportunities finance tips education deposit money tips making education art loan tips education deposits make tips your education home good income tips outcome education issue medicine tips education drugs market tips money education trends self tips roof education repairing market tips education online secure skin tips education tools wedding tips education jewellery newspaper tips for education magazine geo tips education places business tips education design Car tips and education Jips production tips education business ladies tips cosmetics education sector sport tips and education fat burn vat tips insurance education price fitness tips education program furniture tips at education home which tips insurance education firms new tips devoloping education technology healthy tips education nutrition dress tips education up company tips education income insurance tips and education life dream tips education home create tips new education business individual tips loan education form cooking tips education ingredients which tips firms education is good choosing tips most education efficient business comment tips on education goods technology tips education business secret tips of education business company tips education redirects credits tips in education business guide tips for education business cheap tips insurance education tips selling tips education abroad protein tips education diets improve tips your education home security tips education importance
news / events

About July 2013

This page contains all entries posted to Chemical and Biochemical Engineering News & Events in July 2013. They are listed from oldest to newest.

June 2013 is the previous archive.

September 2013 is the next archive.

Many more can be found on the main index page or by looking through the archives.

Powered by
Movable Type 3.34

« June 2013 | Main | September 2013 »

July 2013 Archives

July 29, 2013

Ph.D. Dissertation Defense Announcement - Bill J. Moss

Date: Friday, August 16th, 2013

Time: 10:00 am

Location: ITE 456

Light refreshments will be served at 9:45 am

Dissertation title: Proteomic Analysis of Aspergillus nidulans during Autophagy and the Role of Autophagy Genes Anatg13 and Anatg8

Abstract:

Aspergilli represent an extremely important genus of microorganisms which can be both harmful pathogens, and beneficial pharmaceutical producers. In Aspergilli’s interactions with man, suboptimal nutrient conditions are often present, and lead to a phenomenon known as autophagy. Autophagy is a cellular recycling mechanism that (in the case of macroautophagy) is augmented under nutrient limited conditions to recycle cytoplasmic macromolecules and organelles for use in essential cell functions. Strategic manipulation of autophagy could ultimately lead to improved bioprocesses or anti-fungal treatments. Using the model filamentous fungus Aspergillus nidulans, a number of important questions about autophagy have been addressed.

Critical to the study of autophagy is the balance between self-degradation and self-preservation. Therefore, we adapted an XTT metabolic activity assay for use in filamentous fungi. The assay was first tested using a number of bioprocess related stresses (e.g. temperature, shear), and found to be superior to DCW as an assessment of culture health. Next, the metabolic activity of fungal cultures was tested during autophagy inducing conditions, demonstrating that the autophagy capable TN02A3 strain was more viable than an autophagy deficient ∆atg13 strain in nutrient limiting conditions.

By analyzing the proteome of key autophagy mutants ∆Anatg13 and ∆Anatg8, an improved molecular understanding of autophagy in filamentous fungi was achieved. Using 2-dimensional electrophoresis, 44 unique proteins were observed with significant expression changes caused either by addition of rapamycin (a chemical inducer of autophagy) or deletion of Anatg13. AnAtg13 dependent changes of multiple ribosomal proteins and a key polyamine biosynthetic protein, spermidine synthase (AnSpdA), provides molecular evidence of AnAtg13 dependent lifespan extension in A. nidulans.

After establishing improved shotgun proteomic methods on the Thermo LTQ-XL, we generated a more thorough assessment of the A. nidulans response to autophagy induction by measuring protein expression as a function of time. It was found that autophagy induction caused a rapid and sustained increase in proteolysis, amino acid degradation, and lipid metabolism. These changes occurred in both the control (TN02A3) and autophagy deficient ∆Anatg8 strains. Many of the proteins with a delayed change in expression were autophagy dependent. These include proteins involved in those involved in secretion, hydrolysis of alternative carbon sources, and secondary metabolite production; all of which are important to the bioprocess industry.