News & Events

About March 2014

This page contains all entries posted to Physics Announcements in March 2014. They are listed from oldest to newest.

February 2014 is the previous archive.

April 2014 is the next archive.

Many more can be found on the main index page or by looking through the archives.

Powered by
Movable Type 3.34

« February 2014 | Main | April 2014 »

March 2014 Archives

March 5, 2014

Seminar: Wednesday, March 5 at 3:30 pm

The far-reaching impacts of mineral dust: A satellite perspective
Hongbin Yu
ESSIC/University of Maryland and NASA Goddard Space Flight Center

Dust cycle is an emerging core theme in the Earth system science. Dust emitted from deserts and disturbed soils can have significant impacts on climate, human health, ecosystems, and biogeochemical cycle. On the other hand, dust emissions can be affected by changes in rainfall, wind speed, and vegetation cover. The impacts of dust are far-reaching because of the global movement of dust. Each year about 60 million tons of dust is imported into North America from both coasts, which is dominated by the trans-Pacific transport of dust with both Asian and African origins. This surprisingly large magnitude of dust import is comparable with domestic emissions in North America. Meanwhile, 43 ~ 58 million tons of trans-Atlantic dust from North Africa is deposited into the Amazon basin every year, providing nutrients needed for maintaining the health and productivity of Amazon rainforest, an important ecosystem in regulating global climate. The trans-Pacific aerosol transport, additional source of particulate pollution for the U.S., increases the surface concentration of fine particulate matter (PM2.5) by a magnitude that is much larger in the west than in the east, because of the geographical proximity and high topography of the west. However, when the influences on meteorology by imported aerosols are also considered, the more populous east shows the PM2.5 increase that is comparable to the west. In this presentation I will discuss how these impacts have been assessed utilizing advanced aerosol remote sensing measurements from the MODerate resolution Imaging and Spectroradiometer (MODIS) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) in conjunction with a regional modeling system. Future research will also be discussed.

Location: Physics Bldg., Room 401

March 10, 2014

Seminar: Monday, March 10 at 3:30 pm

Aircraft Observations and Modeling of Cloud and Aerosol Radiative Effects
Sebastian Schmidt
University of Colorado
Laboratory for Atmospheric and Space Physics

Our ability to understand how solar energy is distributed and deposited on our planet has greatly improved over the past two decades, enabled by new global observing systems such as the NASA A-­‐Train satellite constellation. But some of the outstanding questions regarding the radiative effects of atmospheric constituents and the surface cannot be answered with satellite observations alone because the derivation of surface and atmospheric energy budget terms from remote sensing requires a number of assumptions and parameterizations. Aircraft observations can fill some of these gaps because they allow the direct measurement of flux densities above, below and inside atmospheric layers of interest – alongsidein-­‐situ measurements of atmospheric constituents and their optical properties. In my talk,I will show that the combination of airborne spectrally resolved radiation measurements with three-­‐dimensional radiative transfer modeling allowed the resolution of a long-­‐standing issue in so-­‐called radiation closure experiments where cloud absorption from measurements appeared to be consistently higher than expected from the calculations. This led to the discovery of “colored” or spectrally dependent net horizontal photon transport, which is relevant not only to energy budget parameters such as radiative forcing and absorption, but also to remote sensing. The radiative effect of aerosols in homogeneous or inhomogeneous cloud fields can be understood as a spectral perturbation to the radiative signature of the underlying cloud field. Interpreting the combined signal from aerosols and clouds by means of their distinct fingerprints has become one of the goals of an emerging focus area: “cloud-­‐aerosol spectrometry.” I will present some of the results of this new research direction and discuss how multiple observational techniques including spectral imaging and active sounding could be combined to gain a more complete understanding of the radiative effects of clouds, aerosols and gases in future research.

Location: Physics Bldg., Room 401